Highly Regio- and Stereoselective Double Michael Addition– Cyclization of 2,3-Allenoates with Organozinc Compounds: Efficient Synthesis of 5-Benzylidenecyclohex-2-enones**

Zhan Lu, Guobi Chai, and Shengming Ma*

Dedicated to Professor Xiyan Lu on the occasion of his 80th birthday

Highly substituted α,β -unsaturated cyclohexenones, which are found in a wide range of natural products, have caught the attention of many synthetic organic and medicinal chemists.^[1] For example, (+)-guttiferone, hyperforin, and aristoforin are inhibitors of the human sirtuins SIRT1 and SIRT2;^[1a] bisorbicillinol exhibits antioxidant activity; bisvertinolone is an antifungal agent;^[1b,c] and garsubellin A has potent neurotrophic activity.^[1d] α,β -Unsaturated cyclohexenones have also been used as intermediates to synthesize other natural products, such as carvone.^[2] Herein, we report a highly regio- and stereoselective double addition–cyclization reaction of two molecules of a 2,3-allenoate with organozinc compounds providing an efficient route to highly substituted 5-benzylidenecyclohex-2-enone derivatives.

Recently, we reported an iron-catalyzed conjugate addition reaction of 2,3-allenoates with Grignard reagents to afford β,γ -unsaturated alkenoates with high regio- and stereoselectivity.^[3] When we attempted the reaction of ethyl 2-methyl-4-phenyl-2,3-butadienoate (1a) with diethylzinc (3 equiv) under the catalysis of $Fe(acac)_3$ by treatment at -78°C for 1.5 h followed by warming to room temperature for 6 h, the conjugate addition product ethyl 3-ethyl-2-methyl-4-phenyl-3-butenoate (3a) was formed in low yield along with an unknown side product (Table 1, entry 1). Through spectroscopic analysis (¹H and ¹³C NMR, MS) and X-ray diffraction analysis,^[4] we identified that the side product contained a cyclohexenone unit with an exo Z carbon-carbon double bond, and that the reaction showed excellent diastereoselectivity with respect to the two stereogenic centers at the 4- and 6-positions (Figure 1). A control experiment showed that the reaction even proceeds in the absence of Fe(acac)₃ to afford 2a in 61% yield (Table 1, entry 2). The yield of 2a decreased

 [*] Z. Lu, G. Chai, Prof. Dr. S. Ma Laboratory of Molecular Recognition and Synthesis Department of Chemistry, Zhejiang University Hangzhou 310027, Zhejiang (China) Fax: (+86) 21-6416-7510 E-mail: masm@mail.sioc.ac.cn

[**] Financial support was received from the National Natural Science Foundation of China (20732005) and the Major State Basic Research Development Program (2006CB806105). Shengming Ma is a Qiu Shi Adjunct Professor at Zhejiang University. We thank Guangke He in this research group for reproducing the results presented in entries 2, 4, 5, and 9 of Table 3.

Supporting information for this article is available on the WWW under http://dx.doi.org/10.1002/anie.200801497.

Table 1: Effects of reaction time and the amount of diethylzinc on the addition-cyclization of 2,3-allenoate **1 a** with diethylzinc.

Ph 1a 0.4 m	$H_3 + CO_2Et$	Et₂Zn in hexanes (0.88 м) x equiv	toluene (5 mL) $-78 ^{\circ}\text{C}, t_1$ then RT, t_2	$\begin{array}{c c} Ph & H \\ H_3C & Ph \\ EtO_2C''' & H \\ O & Et \\ CH_3 \\ 2a \end{array}$	EtO ₂ C Ph + St Et
Entry	x	<i>t</i> ₁ [min]	<i>t</i> ₂ [h]	Yield of 2a [%] ^[a]	Yield of 3 a [%] ^[a]
1 ^[b]	3	90	6	47	14
2	3	90	9	61	14
3	3	15	10	69	5
4	2	15	10	60	14
5	1.5	15	10	58	16

[a] The yield was determined by NMR spectroscopy using CH_2Br_2 as the internal standard. [b] Fe(acac)₃ (5 mol%) was added as a catalyst. acac= acetylacetonate.

Figure 1. ORTEP representation of 2a.

when less diethylzinc was used (Table 1, entries 3–5). Furthermore, we found that when a solution of diethylzinc in hexanes was added dropwise to a solution of **1a** in toluene at room temperature, the reaction also afforded **2a** in 76% yield together with **3a** in 10% yield (Table 2, entry 1). The solvents THF, Et₂O, Bu₂O, CH₂Cl₂, benzene, and ethylbenzene failed to give better results (Table 2, entries 2–7). Therefore, for

Angew. Chem. Int. Ed. 2008, 47, 6045-6048

Table 2: Effect of the solvent on the addition-cyclization of 2,3-allenoate **1 a** with diethylzinc.

[a] The yield was determined by NMR spectroscopy using $\mbox{CH}_2\mbox{Br}_2$ as the internal standard.

further study, we defined the standard reaction conditions to be the addition of a dialkyl zinc reagent (3 equiv) to a solution of the 2,3-alkadienoate in toluene at room temperature (Table 2, entry 1). ¹H NMR spectroscopic analysis of the crude product showed that only one diastereoisomer was formed.

The scope of the reaction was investigated under these standard conditions (Table 3). The reaction of a variety of substituted 2,3-allenoates with dialkyl zinc reagents afforded the cyclohex-2-enone derivatives with high regio- and stereo-selectivities. Aryl groups with electron-withdrawing or electron-donating substituents are tolerated, and the reaction proceeds when R^1 and R^2 are alkyl groups. When diethyl- or dibutylzinc were used, the reaction proceeded at room temperature (Table 3, entries 1–7 and 12). However, when

Table 3: Addition-cyclization of 2,3-allenoates 1 with dialkyl zinc reagents.^[a]

[a] The reaction was conducted with Et_2Zn in hexanes (0.88 M), Me_2Zn in toluene (1.2 M), or nBu_2Zn in heptane (1.0 M). [b] Yield of the isolated product. [c] The substrate **1a** was recovered in 60% yield.

dimethylzinc was used, the product was not formed at room temperature (Table 3, entry 8); at 100 °C, the corresponding products were formed in 52–64 % yield (Table 3, entries 9–11).

The reaction of the optically active 2,3-allenoates (R)- or (S)-**1a** and **1c**^[5] with dialkyl zinc reagents afforded the corresponding optically active cyclohex-2-enones without racemization (Table 4). The absolute configuration of the

Table 4: Addition-cyclization of optically active 2,3-allenoates 1 with dialkyl zinc reagents.^[a]

Entry		1		R	t [h]		2	
		Ar	ee [%] ^[b]				Yield [%] ^[c]	ee [%] ^[b]
1	(R)- 1 a	Ph	97	Et	1 ^[d]	(4 <i>S</i> ,6 <i>R</i>)- 2 a	61	97
2	(S)- 1 a	Ph	96	Et	3 ^[d]	(4 <i>R</i> ,6 <i>S</i>)- 2 a	76	96
3	(R)- 1 a	Ph	97	Me	12 ^[e]	(4 <i>S</i> ,6 <i>R</i>)- 2 h	51	95
4	(S)- 1 a	Ph	96	Me	12 ^[e]	(4R,6S)- 2h	52	95
5	(R)-1a	Ph	98	nВu	5 ^[f]	(4S,6R)- 2k	69	97
6	(S)- 1 a	Ph	96	nBu	4 ^[g]	(4R,6S)- 2k	73	96
7	(R)- 1 c	p-BrC ₆ H ₄	92	Et	4.5 ^[d]	(4 <i>S</i> ,6 <i>R</i>)- 2 c	65	92
8	(S)- 1 c	p-BrC ₆ H ₄	86	Et	3 ^[d]	(4R,6S)- 2c	69	85

[a] The reaction was conducted with Et_2Zn in hexanes (0.88 M), Me_2Zn in toluene (1.2 M), or nBu_2Zn in heptane (1.0 M). [b] Determined by HPLC on a chiral phase. [c] Yield of the isolated product. [d] The reaction was carried out at room temperature. [e] The reaction was carried out at 100°C. [f] The reaction was carried out at room temperature for 3 h, then at 30°C for 2 h. [g] The reaction was carried out at room temperature for 2 h, then at 50°C for 2 h.

products was established by X-ray diffraction analysis of (-)-(4S,6R)-**2c** by using the two bromine atoms as the reference (Figure 2).^[4,6] The reactions of (-)-(R)-**1a** (97% *ee*) and (+)-

Figure 2. ORTEP representation of (-)-(4S,6R)-2c.

6046 www.angewandte.org

(S)-1a (96% *ee*) proceeded even with Me₂Zn at 100 °C to give the products (-)-(4S,6R)-2h and (+)-(4R,6S)-2h with 95% *ee* (Table 4, entries 3 and 4).

A model to predict the stereochemical outcome of this reaction is shown in Scheme 1. In the first step, the regio- and stereoselective Michael addition^[7] of Et₂Zn to (-)-(R)-**1a** affords the optically active α -zincated 2-alkenoate **4**.^[8] A second Michael addition^[7] of the γ -carbon atom of intermediate **4** to the center carbon atom of the allene moiety in (-)-(R)-**1a** affords **5A** with high stereo-

Scheme 1. Model for the prediction of the stereochemical outcome of the reaction.

selectivity. Its conformer 5B then undergoes an intramolecular 1,2-addition reaction to form the six-membered ring. Owing to the steric interaction between the Ar group (in this case phenyl) of the 2,3-allenoate and the approaching allylic group in 4, the Z stereoselectivity for the exo C=C bond is high.^[3] Of course, **4** may be further converted into the optically active atropisomeric zinc 1,3-dienolate $6^{[9]}$ which would be transformed into racemic 7 or 5A upon reaction with H^+ or (-)-(R)-1a, respectively. However, the fact that the zinc 1,3-dienolate formed by transmetalation with ZnBr₂ of the magnesium 1,3-dienolate (prepared by the ironcatalyzed conjugate addition of a Grignard reagent to (\pm) - $(1a)^{[3]}$ reacted with 2,3-allenoate (\pm) -1a to afford (\pm) -2a in less than 3% yield (as determined by NMR spectroscopy) indicated the low reactivity of the zinc dienolate intermediate 6 towards $1a^{[10]}$ (Scheme 2). In a further test reaction, a magnesium 1,3-dienolate was formed by the Fe(acac)₃catalyzed Michael addition reaction of (-)-(R)-1a with EtMgBr (0.5 equiv) at -78°C and subsequently converted into a zinc 1.3-dienolate of type 6 by transmetalation with

Scheme 2. Mechanistic study. Yields and recoveries were determined by NMR spectroscopy using CH_2Br_2 as the internal standard.

ZnBr₂ (0.5 equiv) at -78 °C. The reaction of this zinc 1,3dienolate with the remaining 0.5 equivalents of (-)-(R)-**1a** afforded the cyclic product **2a** in 7% yield with 0% *ee* (Scheme 2). This result ruled out the possibility that the racemic^[11] zinc 1,3-dienolate reacts with (-)-(R)-**1a** to afford the optically active cyclic product **2**.^[9] Further study is required to determine the true mechanistic nature of this transformation.^[12]

In summary, we have developed a highly regio- and stereoselective double Michael addition-cyclization of two molecules of a 2,3-allenoate with organozinc compounds. The (Z)-5-benzylidenecyclohex-2-enones were produced with high diastereoselectivity with respect to the two stereogenic centers at the 4- and 6-positions. The aromatic group at the 4-position may increase the reactivity of 2,3-allenoates towards organozinc compounds. When optically active 2,3-allenoates were employed, optically active (Z)-5-benzylidenecyclohex-2-enones were produced without racemization. Owing to the relatively low reactivity of dialkyl zinc reagents in terms of conjugate addition to C=C bonds, [7a] this study should stimulate new research in the chemistry of organozinc compounds. We are conducting further studies in this area.

Experimental Section

Synthesis of (\pm) -2a: Allene 1a (83.6 mg, 0.4 mmol) and toluene (5 mL) were added sequentially to a dried Schlenk tube under a nitrogen atmosphere at room temperature. A solution of Et₂Zn in hexanes (1.36 mL, 1.2 mmol, 3 equiv) was then added to the reaction mixture with a syringe over 3-5 min at room temperature. When the reaction was complete (as monitored by TLC), it was quenched by the dropwise addition of saturated NH_4Cl (1 mL) and then water (5 mL) at room temperature. The mixture was extracted with diethyl ether $(3 \times 30 \text{ mL})$, and the organic layer was washed with dilute aqueous HCl (1%), a saturated aqueous solution of NaHCO₃, and brine, and dried over anhydrous Na₂SO₄. Evaporation and column chromatography on silica gel (eluent: petroleum ether/ethyl acetate = 20:1) afforded (Z)-2a (0.0520 g, 65%) as a solid. M.p.: 125-126°C (hexane); IR (neat): $\tilde{\nu} = 2975$, 2939, 1744, 1667, 1641, 1599, 1492, 1449, 1366, 1223, 1193, 1098 cm⁻¹; ¹H NMR (300 MHz, CDCl₃): $\delta =$ 7.35-7.17 (m, 8H), 7.17-7.09 (m, 2H), 6.86 (s, 1H), 4.47 (s, 1H), 3.60-3.47 (m, 1H), 3.30-3.15 (m, 1H), 2.70-2.50 (m, 1H), 2.22-2.10 (m, 1 H), 2.00 (s, 3 H), 1.20–1.10 (m, 6 H), 0.90 ppm (t, J = 7.1 Hz, 3 H); ¹³C NMR (CDCl₃, 75 MHz): $\delta = 197.3$, 170.4, 157.7, 141.5, 141.4, 136.0, 131.4, 129.0, 128.63, 128.58, 127.9, 127.6, 127.2, 127.1, 60.9, 58.6, 54.3, 27.4, 24.2, 13.4, 11.9, 11.6 ppm; MS: *m/z* (%): 388 (*M*⁺, 61), 315

Communications

(100); elemental analysis: calcd (%) for $C_{26}H_{28}O_3\colon C$ 80.38, H 7.26; found: C 80.45, H 7.10.

Synthesis of (+)-(4*R*,6*S*)-(*Z*)-**2a**: The treatment of (+)-(*S*)-**1a** (0.0404 g, 0.2 mmol, 96% *ee*; $[a]_D^{20} = +285.3 \text{ deg cm}^3 \text{g}^{-1} \text{dm}^{-1}$ (*c* = 0.82 gdL⁻¹, CHCl₃))^[1d] in toluene (2.5 mL) with a solution of Et₂Zn in hexanes (0.88 M, 0.70 mL, 0.6 mmol, 3 equiv) afforded (+)-(4*R*,6*S*)-(*Z*)-**2a** (0.0297 g, 76%, 96% ee). The *ee* value was determined by HPLC (chiralcel AD-H, *n*-hexane/*i*PrOH = 95:5, 0.7 mLmin⁻¹, *n* = 230 nm, $t_R(\text{minor}) = 7.8 \text{ min}, t_R(\text{major}) = 8.7 \text{ min}$). $[a]_D^{20} = +74.6 \text{ deg cm}^3 \text{g}^{-1} \text{dm}^{-1}$ (*c* = 1.49 gdL⁻¹, CHCl₃). The analytical and spectroscopic data of (+)-(4*R*,6*S*)-(*Z*)-**2a** were identical to those of racemic (*Z*)-**2a**.

Received: March 30, 2008 Revised: April 30, 2008 Published online: July 9, 2008

Keywords: allenes · cyclization · esters · Michael addition · organozinc reagents

- [1] a) C. Gey, S. Kyrylenko, L. Hennig, L.-N. D. Nguyen, A. Büttner, H. D. Pham, A. Giannis, Angew. Chem. 2007, 119, 5311; Angew. Chem. Int. Ed. 2007, 46, 5219; b) K. C. Nicolaou, G. Vassilikogiannakis, K. B. Simonsen, P. S. Baran, Y.-L. Zhong, V. P. Vidali, E. N. Pitsinos, E. A. Couladouros, J. Am. Chem. Soc. 2000, 122, 3071; c) K. C. Nicolaou, K. B. Simonsen, G. Vassilikogiannakis, P.S. Baran, V.P. Vidali, E.N. Pitsinos, E.A. Couladouros, Angew. Chem. 1999, 111, 3762; Angew. Chem. Int. Ed. 1999, 38, 3555; d) A. Kuramochi, H. Usuda, K. Yamatsugu, M. Kanai, M. Shibasaki, J. Am. Chem. Soc. 2005, 127, 14200; e) R. Alibés, P. Bayón, P. de March, M. Figueredo, J. Font, G. Marjanet, Org. Lett. 2006, 8, 1617; f) A. Nakazaki, T. Era, Y. Numada, S. Kobayashi, Tetrahedron 2006, 62, 6264; g) A. Srikrishna, V. H. Pardeshi, G. Satyanarayana, Tetrahedron Lett. 2007, 48, 4087; for the catalytic enantioselective alkylative aldol reaction of allenic esters and ketones with dialkyl zinc reagents towards the synthesis of functionalized δ-lactones, see: h) D. Zhao, K. Oisaki, M. Kanai, M. Shibasaki, J. Am. Chem. Soc. 2006, 128, 14440.
- [2] a) A. Srikrishna, D. H. Dethe, Org. Lett. 2004, 6, 165; b) A. Srikrishna, D. H. Dethe, P. R. Kumar, Tetrahedron Lett. 2004, 45, 2939; c) K. C. Nicolaou, D. Pappo, K. Y. Tsang, R. Gibe, D. Y.-K. Chen, Angew. Chem. 2008, 120, 958; Angew. Chem. Int. Ed. 2008, 47, 944.
- [3] Z. Lu, G. Chai, S. Ma, J. Am. Chem. Soc. 2007, 129, 14546.

- [4] Crystal data for **2a**: C₂₆H₂₈O₃, M_r =388.51, monoclinic, *P*121/c1, Mo_{Ka}, final R indices ($I > 2\sigma(I)$): R1 = 0.0491, wR2 = 0.1028, a = 10.4687(8), b = 14.8999(10), c = 14.6133(10) Å, $\alpha = 90$, $\beta = 103.0580(19)$, $\gamma = 90^{\circ}$, V = 2220.5(3) Å³, Z = 4, number of reflections measured/unique: 5052/1585 ($R_{int} = 0.061$), number of observations: 5051 ($I > 2\sigma(I)$), 291 parameters. CCDC 672093 (**2a**) and CCDC 672094 ((-)-(4*S*,6*R*)-**2c**) contain the supplementary crystallographic data for this paper. These data can be obtained free of charge from The Cambridge Crystallographic Data Centre via www.ccdc.cam.ac.uk/data_request/cif.
- [5] S. Ma, S. Wu, Chem. Commun. 2001, 441.
- [6] Crystal data for (-)-(4*S*,6*R*)-**2c**: $C_{26}H_{26}Br_2O_3$, $M_r = 546.30$, monoclinic, *P*1211, $Mo_{K\alpha}$, final *R* indices ($I > 2\sigma(I)$): *R*1 = 0.0635, wR2 = 0.1966, a = 7.3758(4), b = 24.7978(13), c = 14.0258(7) Å, $\alpha = 90$, $\beta = 90.2228(14)$, $\gamma = 90^\circ$, V = 2565.4(2) Å³, Z = 4, number of reflections measured/unique: 5956/3461 ($R_{int} = 0.073$), number of observations: 5956 ($I > 2\sigma(I)$), 561 parameters.
- [7] For a monograph on carbozincation, see: a) E. Lorthiois, C. Meyer, *The Chemistry of Organozinc Compounds* (Eds.: Z. Rappoport, I. Marek), Wiley, Chichester, **2006**, pp. 863–977; for the uncatalyzed Michael addition of *t*Bu₂Zn to conjugated alkynes, see: b) J. Auger, G. Courtois, L. Miginiac, *J. Organomet. Chem.* **1977**, *133*, 285; c) G. Courtois, L. Miginiac, *J. Organomet. Chem.* **1980**, *194*, 13; d) L. Miginiac, *J. Organomet. Chem.* **1982**, 238, 235; for the *anti* addition of nucleophiles to allenoates, see: e) Y. Naruse, S. Kakita, A. Tsunekawa, *Synlett* **1995**, 711.
- [8] In the reported crystal structure of the Reformatsky reagent (BrZnCH₂COOtBu·THF)₂, the C–Zn bond was clearly visible: a) J. Dekker, P. H. M. Budzelaar, J. Boersma, G. J. M. van der Kerk, A. L. Spek, Organometallics **1984**, *3*, 1403; see also: b) J. Dekker, A. Schouten, P. H. M. Budzelaar, J. Boersma, G. J. M. van der Kerk, A. L. Spek, A. J. M. Duisenberg, J. Organomet. Chem. **1987**, *320*, 1; for the configurational stability of organozinc reagents, see: S. Klein, I. Marek, J. F. Normant, J. Org. Chem. **1994**, *59*, 2925.
- [9] We thank one of the referees for suggesting this mechanistic possibility.
- [10] The fact that we did not observe the formation of the sixmembered product 2 during the studies described in ref. [3] indicates the lower reactivity of magnesium 1,3-dienolates towards 2,3-allenoates.
- [11] The reaction of optically active (-)-(R)-**2a** with RMgBr provided the racemic products of conjugate addition.
- [12] For an uncatalyzed addition of a dialkyl zinc reagent to 2alkenoates with a radical mechanism, see: F. Denes, S. Cutri, A. Perez-Luna, F. Chemla, *Chem. Eur. J.* 2006, 12, 6506.