

Bioorganic & Medicinal Chemistry Letters 8 (1998) 1375-1380

BIOORGANIC & MEDICINAL CHEMISTRY LETTERS

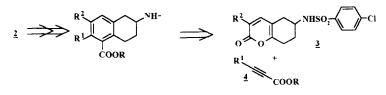
SYNTHESIS AND BIOLOGICAL EVALUATION OF NEW TETRAHYDRONAPHTHALENE DERIVATIVES AS THROMBOXANE RECEPTOR ANTAGONISTS'

Bernard Cimetière, Thierry Dubuffet, Olivier Muller, Jean-Jacques Descombes, Serge Simonet, Michel Laubie, Tony J. Verbeuren and Gilbert Lavielle*

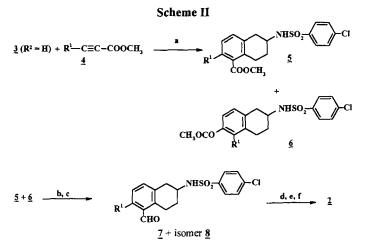
Institut de Recherches Servier, Centre de Recherches de Croissy, 125, Chemin de Ronde, 78290 Croissy-sur-Seine, France

Received 2 March 1998; accepted 21 April 1998

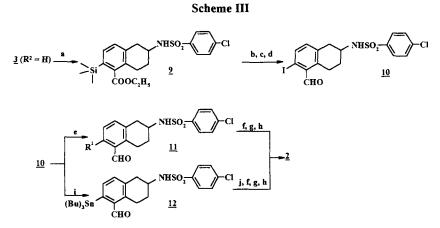
Abstract: New polysubstituted tetrahydronaphthalene derivatives were prepared as thromboxane receptor (TP-receptor) antagonists. Within this series of compounds S 18886 has been identified as an orally active, highly potent antagonist with a very long duration of action in different species. © 1998 Elsevier Science Ltd. All rights reserved.


Thromboxane A_2 (TXA₂) is a potent, short-lived endogenous arachidonic acid metabolite which induces platelet aggregation and vasoconstriction and has been implicated in a wide range of cardiovascular, pulmonary and renal diseases². As a consequence, the search for compounds to prevent the deleterious action of TXA₂ is currently very active^{3,4}. As part of a program to develop potent, orally active TP-receptor antagonists, with a long duration of action, we have studied the synthesis of different series of compounds⁵. Numerous non-prostanoid TP-receptor antagonists have a carboxylic acid and a benzenesulfonamide group separated by a spacer as common structural features⁶. Ramatroban <u>1</u> is a good example of this type of compounds in which the spacer is a rigid polycycle, namely a carbazole derivative⁷. We report here the synthesis and the initial biological evaluation of a novel series of TP-receptor antagonists <u>2</u> where a substituted tetrahydronaphthalene was chosen as a rigid spacer.

Chemistry:

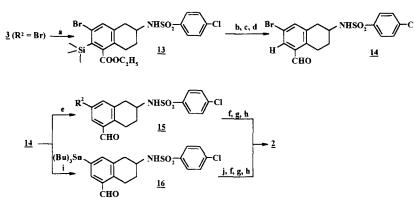

The target compounds $\underline{2}$ were considered as polysubstituted benzenes instead of naphthalene derivatives and then the benzene ring was constructed via a Diels-Alder reaction between an appropriate 2-pyrone $\underline{3}$ and an acetylenic derivative $\underline{4}^8$ (Scheme I).

Retrosynthetic Scheme I


* E-mail: shuet@servier.fr Fax: 33 1 41 18 24 70 0960-894X/98/\$19.00 © 1998 Elsevier Science Ltd. All rights reserved. *PII:* S0960-894X(98)00220-0 The 2-pyrone $\underline{3}$ (R² = H) was obtained via a new and very efficient route⁹ and offers a general access to a wide range of compounds $\underline{2}$ where R² = H.

Synthesis of compounds 2 ($\mathbb{R}^2 = \mathbf{H}$). Compounds having no substituent on position 3 were prepared as outlined in Scheme II or III. The route shown in Scheme II was chosen when the acetylenic derivatives $\underline{4}$ were easily available. But in that case the Diels-Alder cycloaddition may lead to a mixture of two regioisomeric esters $\underline{5} + \underline{6}^{10}$. Reduction of this mixture of esters followed by the oxidation of the resulting alcohols gave the aldehydes $\underline{7} + \underline{8}$ in nearly quantitative yield. Separation of the regioisomers was done at this stage by preparative chromatography¹¹. Treatment of aldehyde $\underline{7}$ with carbomethoxymethylene triphenylphosphorane followed by the reduction of the double bond of the resulting ethylenic ester with sodium borohydride added with 0.25 equivalent of cobaltous chloride¹² gave the propionic acid methyl ester which was saponified in the final acid $\underline{2}$.

a: decaline, 200°C; b: LiAlH4/AlCl₃/THF-Et₂O, 20°C; c: 4-benzylpyridinium-dichromate/ CH₂Cl₂, 20°C; d: Ph₃P = CHCOOCH₃/toluene/reflux; e: NaBH4/CoCl₂/MeOH, 20°C; f: NaOH/MeOH/ H₂O, reflux


A short study of the regioselectivity of the Diels-Alder reaction showed that the introduction of a bulky R^1 substituent in <u>4</u> led to the selective synthesis of the desired isomer <u>5</u>. Then using the very bulky, commercially available ethyl 3-(trimethylsilyl)propiolate we developped a general and regioselective synthesis of compounds <u>2</u> (Scheme III). Compound <u>9</u> was isolated in 85% yield, after refluxing a solution of <u>3</u> ($R^2 = H$) with three equivalents of ethyl 3-(trimethylsilyl)propiolate during 16 hours. The transformation of <u>9</u> following two steps (b, c) previously described in Scheme II gave the corresponding aldehyde which was submitted to a iododesilylation reaction to yield the key iodoaldehyde <u>10</u> in 85% overall yield¹³. Introduction of different substituents on position 2 was achieved using a palladocatalysed Stille coupling. Then, the iodo derivative <u>10</u> was treated either with a tributylstannyl derivative or with the hexabutyldistannane to give <u>11</u> and <u>12</u> respectively. The choice between the two routes was dependent on the difficulty to synthesize the tin derivative or on the nature of the substituent to be transferred.

a: $(CH_3)_3SiC \equiv C-COOC_2H_5$, reflux; b: LiAlH4/THF-Et₂O, 20°C; c: 4-benzylpyridinium dichromate, CH₂Cl₂, 20°C; d: ICl, CH₂Cl₂, 20°C; e: R¹Sn(Bu)₃/Pd(PPh₃)₄, NMP, 110°C, 1 h; f: Ph₃P=CHCOOCH₃, toluene, reflux; g: NaBH4/CoCl₂, MeOH, 20°C.; h: NaOH, MeOH/H₂O, reflux; i: [(Bu₃)Sn]₂/Pd(PPh₃)₄, NMP, 110°C; j: R¹Br, Pd(PPh₃)₄, NMP, 110°C

Synthesis of compounds $\underline{2} (\mathbb{R}^2 \neq H)$. 3-bromopyrone $\underline{3} (\mathbb{R}^2 = Br)$ was the starting point of compounds where $\mathbb{R}^2 \neq H$. $\underline{3} (\mathbb{R}^2 = Br)$ was obtained in 50% yield (after recrystallization) by treatment of $\underline{3} (\mathbb{R}^2 = H)$ with one equivalent of bromine in acetic acid at room temperature during 12 hours¹⁴. Then the sequence depicted in Scheme IV was applied. The Diels-Alder reaction using an excess of ethyl 3-(trimethysilyl)propiolate gave selectively the desired regioisomer <u>13</u> in 85% yield. The latter was protodesilylated in acidic medium¹⁵ and then transformed in bromoaldhehyde <u>14</u> (overall yield 70%). <u>14</u> was treated with organostannane derivatives under Stille conditions to give <u>15</u> or <u>16</u> (30-90%).

Scheme IV

a: $(CH_3)_3Si-C\equiv C-COOC_2H_5$, reflux, 36 h; b: CF₃COOH, reflux, 1h; c: LiAlH₄/AlCl₃, THF/Et₂O, 20°C; d: 4benzylpyridinium dichromate, CH₂Cl₂, 20°C; e: R²Sn(Bu)₃/Pd(PPh₃)₄, NMP, 110°, 3 h; f: Ph₃P=CHCOOCH₃, toluene reflux; g: NaBH₄/CoCl₂, MeOH, 20°C; h: NaOH, MeOH/H₂O, reflux; i: [(Bu₃)Sn]₂/Pd(PPh₃)₄, NMP, 110°C; j: R²Br, Pd(PPh₃)₄, NMP, 110°C

Disubstituted compounds $\underline{2p}$ ($R^1 = R^2 = CH_3$) and $\underline{2q}$ ($R^1 = R^2 = Ph$) were prepared from $\underline{3}$ ($R^2 = Br$) following a slightly modified sequence: 1) reaction of $\underline{3}$ with the methyl 2-butynoate or the methyl phenylpropiolate in 70% and 55% yield respectively; 2) substitution of the bromine under Stille conditions with tetramethyltin or phenyltributyltin (in 80% yield in both cases); 3) chain elongation.

Biological results: Table I and II represent the *in vitro* and *in vivo* results of the compounds.

The antagonistic properties on TP-receptors were first evaluated using the isolated tissue technique¹⁶. Isolated rabbit saphenous vein rings were contracted with increasing concentrations of the TP-receptor agonist, U46619, in the absence or presence of compounds; the antagonistic activity was measured by calculating the pA_2 values. The *in vivo* activity of the compounds was evaluated after their *i.v.* administration to guinea pigs in which an increase in the tracheal pressure was evoked with U46619 using the technique originally described by Konzett and Rossler¹⁷; the ID₅₀ values were expressed in $\mu g/kg$. The anti-platelet activity of the compounds was measured by studying their inhibitory effects on human platelet rich plasma (PRP) aggregated with U46619; the IC₅₀ values were expressed in μM .

Examination of the tables indicates that the tetrahydronaphthalenes $\underline{2}$ are highly potent TP-receptor antagonists. However there is not always a good correlation between data obtained *in vitro* and *in vivo* or between those obtained on the rabbit saphenous vein and on human platelets. These could be due to differences in species and in receptor subtypes¹⁸ or these may also be related to plasma-protein binding of some compounds. The influence of the nature of the substituent on position 2 on antagonistic activity was studied and results are shown in Table I. In general the alkyl groups gave the lowest activity and derivatives bearing phenyl or benzyl groups the highest: phenyl ($\underline{2f} \simeq \text{benzyl} (\underline{2g}, \underline{2h}) > \text{isopropyl} (\underline{2e}) \simeq \text{straight alkyl} (\underline{2a}, \underline{2d})$. *In vitro*, the 2-hydroxymethyl derivative, which is a metabolite of $\underline{2a}$, is ten time less potent than its parent compound. Comparison of Tables I and II, illustrates that compounds bearing their substituents on position 3 are generally more potent than their isomers on position 2. ($\underline{2i} > \underline{2a}; \underline{2i} > \underline{2g}$ and $\underline{2l} > \underline{2h}$). Very potent derivatives were obtained by introducing different substituents on the benzyl group (Table II: $\underline{2k} - \underline{20}$). It is remarkable that compound $\underline{2m}$ bearing a 4-phenyl substituent is still a potent antagonist, suggesting the possibility of grafting very bulky substituents on position 4 on the benzyl group. The disubstituted compounds are less active ($\underline{2p}$) or inactive ($\underline{2q}$).

The most active compounds have been tested *in vivo* in different species and special attention was payed to their oral absorption and their duration of action. Given orally in dogs, at the dose of 1 μ g/kg <u>2a</u> inhibited completely the *ex vivo* platelet aggregation caused by U46619 for a period of at least four days. Compounds <u>2b</u>, <u>2g</u>, <u>2k</u> and <u>2o</u> tested orally in dogs were less long acting. Then the two enantiomers of <u>2a</u> were separated¹⁹ and the (d) isomer (S 18886) was found to be the most active isomer in all species except in guinea pigs¹⁸. S 18886 was therefore selected for further evaluation.

Compound *	Ri	R²	Inhibition of U46619 induced		
			contraction of isolated rabbit saphenous vein (pA ₂) ^b	increase in tracheal pressure of guinea pigs ^b (ID ₅₀ µg/kg)	aggregation of human platelets (IC ₅₀ µM) ^b
2a racemic	CH ₃	Н	8.9	31	0.33
(1)	11	n	8.2	15	0.78
(d) S 18886	**	'n	8.9	35	0.23
<u>2b</u>	Н	11	9.4	7	0.11
<u>2c</u>	CH₂OH	11	7.9	23	1.1
<u>2d</u>	nC_3H_7	**	9	22	0.44
<u>2e</u>	iC ₃ H ₇	**	9.2	32	1.3
<u>2f</u>	Ph	H	10.6	15	0.12
<u>2g</u>	CH2	"	9.9	4.8	0.086
<u>2h</u>	CH ₂	n	9.3	3.1	0.017

TABLE I: Biological activities of compounds $2(R^2 = H)$

TABLE II: Biological activities of compounds 2	(R ² ≠ H)
--	--------------------------------------

<u>2i</u>	Н	CH ₃	8.9	7.3	0.28
<u>2i</u>	'n	CH2-	10.1	4.8	0.006
<u>2k</u>	"	CH2-F	10.8	4.2	0.011
21	"	CH ₂	11,0	2.4	0.008
<u>2m</u>	"		8.9	12	0.049
<u>2n</u>	17	CH2-CCH3	9.6	4.7	0.035
20	"		9.1	6.2	0.036
<u>2p</u>	CH3	CH ₃	8.1	55	1.7
<u>2a</u>	Ph	Ph	NT	500	NT
Ramatroban			7.9	17	0.38
ICI 192605			8.6	0.7	0.013

a: all compounds had satisfactory IR,MS and ¹H, ¹⁷C-NMR analysis; b: values represent at least three determinations; NT: not tested

Acknowledgements

The authors thank Véronique Barou, Edith Bonhomme, Sophie Cournailleau, Yvette Menant, Denise Versluys for excellent technical assistance and Solange Huet for secretarial assistance.

References and notes:

- 1. Presented in part at the 210th National American Chemical Society Meeting, Chicago, III., Poster MEDI062, August 20-24, 1995.
- 2. Cross, P.E.; Dickinson, R.P. Chemistry in Britain 1991, 911.
- 3. Hall, S.E. Med. Res. Review 1991, 11, 503.
- 4. Misra, R.N. Exp. Opin. Invest. Drugs 1994, 19, 765.
- 5. Dubuffet, T.; Muller, O.; Simonet, S.S.; Descombes, J.J.; Laubie, M.; Verbeuren, T.J.; Lavielle, G. Bio. Org. Med. Chem. Lett. 1996, 6, 349.
- 6. Buchmann, B.; Klar, U.; Rehwinkel, H.; Vorbrüggen, H. in *Therapeutic Applications of Prostaglandins*; Vane, J. and O'Grady, J., Ed.; Edward, Arnold; London, 1993, Chapt. 4, pp. 62-63.
- 7. Rosentreter, V.; Böshagen, H.; Senter, F.; Fiedler, V.B. Arzneim. Forsch. 1989, 39, 1519.
- 8. Afarinkia, K.; Vinader, V.; Nebon, T.D.; Posner, G.H. Tetrahedron 1992, 48, 9111.
- 9. Dubuffet, T.; Cimetière, B.; Lavielle, G. Synthetic Comm. 1997, 27, 1123.
- 10. For example the ratio 5/6 varied from 90/10 (R¹ = methyl) to 100/0 (R¹ = isopropyl).
- 11. Cyclohexane/EtOAc; 80v/20v. Aldehyde 7a was obtained in 60% yield after crystallization.
- 12. Chung, S.K. J. Org. Chem. 1979, 44, 1014.
- 13. Felix, G.; Dunoguès, J.; Pisciolti, F.; Calas, R. Angew. Chem. Int. Ed. Engl. 1977, 16, 488.
- 14. Pirkle, W.H.; Dines, M. J. Org. Chem. 1969, 34, 2239.
- 15. Eaborn, C.; Jenkins, I.D.; Walton, D.R.M. J. Chem. Soc. Perkin II, 1974, 596.
- 16. Verbeuren, T.J.; Simonet, S.; Herman, A.G. Eur. J. Pharmacol. 1994, 270,27.
- 17. Konzett, H. and Rossler, R. Arch. Exp. Pathol. Pharmacol. 1940, 195, 71.
- 18. Simonet, S.; Descombes, J.J.; Vallez, M.O.; Dubuffet, T.; Lavielle, G.; Verbeuren, T.J. Recent Advan. Prostagl. Thromb. Leuk. Res. in press.
- 19. Separation was done by HPLC (Preparative DAICEL AS column; heptane, ethanol, TFAA; 70v/30v/0.2v). Analytical data for S 18886: [α]_D²⁰ = 30.85 (DMSO, [c] = 1%); I.R.: 3400-2200, 3327, 1709, 1343-1160 cm⁻¹; ¹H-NMR (DMSO-d₆)δ: 12.5 (s,1H), 7.9 (s,1H), 7.8 (d,2H), 7.7 (d,2H), 6.9-6.7 (d,2H), 3.3 (m,1H), 3.0-2.5 (m,6H), 2.3 (m,2H), 2.2 (s,3H), 2.0-1.5 (m,2H).