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A B S T R A C T

A novel fused isocoumarin skeleton has been synthesized through selective domino multicyclizations by

mixing homothallic acid and 2,3-diphenylacryloyl chloride at 200 8C under catalyst and solvent free

reaction conditions. Six fused rings with two stereogenic centers were assembled in a convenient one-

pot operation in good yield. The resulting hexacyclic fused isocoumarin skeleton and its stereochemistry

was fully characterized and unambiguously confirmed by X-ray diffraction analysis.

� 2014 Muhammad Moazzam Naseer and Nasim Hasan Rama. Published by Elsevier B.V. on behalf of

Chinese Chemical Society. All rights reserved.
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1. Introduction

The assembly of complex polycyclic skeletons of chemical and
biomedical interest has become an important, challenging and
active area of research in modern organic chemistry [1]. Among
these skeletons, isocoumarin based fused ring system present in
many natural products (Fig. 1) shows a broad range of biological
activities [2]. In recent years, a variety of methods have been
developed to prepare these structurally complex fused skeletons
[3]. However, synthetic chemists are continuously searching for
the development of new, cleaner and efficient chemical transfor-
mation methodologies, or modifications in the established
synthetic pathways to ensure eco-friendly and cost effective
synthesis with minimal or no use of toxic chemicals.

Till date, excellent region-, chemo-, diastereo- and enantio-
selectivitiesareobtainedforthepreparationof complex moleculesby
developing several highly selective procedures [4]. The procedure
usuallyused for theconstructionofsuchorganiccompoundsinvolves
a step-wise formation of individual bonds in the target molecule.
48
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However, it is much moredesirable, if onecould formseveralbondsin
one go without isolating the intermediates and changing the reaction
conditions. The waste produced in such synthetic procedures is very
small as compared to step-wise pathways. Therefore, from the
synthetic point of view, one-pot synthesis of fused-ring systems is an
attractive procedure for searching bioactive compounds.

Coumarin derivatives [5] are important synthetic targets because
of possessing diverse biological applications [6]. They are also
known to have vasodilatory [7], anticoagulant [8], anti-HIV [9],
antitumor [10] and anti-inflammatory [11] properties. The fluores-
cent properties of some isocoumarin derivatives are also reported
[12]. Herein, we report one-pot synthesis of novel fused isocoumarin
framework through highly selective domino multicyclizations
under catalyst and solvent free reaction conditions. The resulting
fused isocoumarin framework is an interesting scaffold for drug
design and discovery and can play an important role in pharmaceu-
tical research.

2. Experimental

2.1. Materials and methods

All reagents and solvents were used as obtained from the
supplier or recrystallized/redistilled as required. Thin layer
acyclic fused isocoumarin framework through selective domino
hem. Lett. (2014), http://dx.doi.org/10.1016/j.cclet.2014.03.022
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Fig. 1. Some representative natural products.

Ta
Op

E

1

2

3

4

5

6

a

T.M. Babar et al. / Chinese Chemical Letters xxx (2014) xxx–xxx2

G Model

CCLET 2906 1–5
romatography (TLC) was performed using aluminum sheets
erck) coated with silica gel 60 F254. The melting points of

mpounds were determined using capillary tubes and an
ectrothermal melting point apparatus, model MP-D Mitamura
ken Kogyo, Japan. IR spectra of compounds were recorded on a
o-Rad FTS 3000 MX spectrophotometer (400–4000 cm�1). NMR
ectra were recorded using a Bruker AM-300 spectrometer and
emical shifts are reported in ppm versus tetramethylsilane with

ther tetramethylsilane or the residual solvent resonance used as
 internal standard. Mass spectra were acquired on a Bruker

niflex MALDI-TOF instrument and elemental analyses were
rried out with a LECO-183 CHNS model.

2. Procedure for the synthesis of hexacyclic fused isocoumarin (6)

A mixture of 2,3-diphenylacrylic acid (2.07 g, 9 mmol) and
ionyl chloride (1 mL) was heated in the presence of a few drops

 DMF for 30 min at 70 8C. Completion of reaction was indicated
Scheme 1. Novel domino multicyclization

ble 1
timization of reaction conditions for the synthesis of 6.

ntry Reactants ratio (1:2) Temp. (8C) Time

 1:1 200 2 

 1:2 200 2 

 1:3 200 2 

 1:3 200 3 

 1:3 200 4 

 1:3 200 3.5 

Isolated yield.

Please cite this article in press as: T.M. Babar, et al., Synthesis of he
multicyclizations under catalyst and solvent free conditions, Chin. 
by the disappearance of gas evolution. Excess thionyl chloride was
removed under reduced pressure to afford 2,3-diphenylacryloyl
chloride. Homophthalic acid (0.54 g, 3 mmol) was then added to it
and the mixture was heated first for 3.5 h at 200 8C and then cooled
to room temperature. Addition of aqueous solution of sodium
carbonate (5%, 200 mL), followed by filtration and washing
thoroughly with water furnished the crude product, which was
recrystallized in toluene to give compound 6 in pure form (68%).
Mp: 135–136 8C; IR (KBr, cm�1): n 2918 (C–H), 1704 (C55O), 1569
(C55C); 1H NMR (300 MHz, CDCl3): d 8.11 (dd, 1H, J = 1.2, 7.5 Hz),
7.91 (d, 1H, J = 7.5 Hz), 7.88–7.82 (m, 1H), 7.59–7.19 (m, 12H), 6.98
(dd, 2H, J = 1.2, 7.5 Hz), 4.96 (s, 1H); 13C NMR (75 MHz, CDCl3): d
204.6, 161.4, 151.1, 142.7, 137.5, 135.8, 135.7, 135.3, 133.1, 130.6,
128.8, 128.7, 128.6, 128.4, 128.2, 127.4, 124.9, 124.4, 123.6, 122.7,
107.8, 62.7, 48.2, 31.0; MS [MALDI-TOF] (m/z) 427.13 [M+H+]
(100), 428.13 (33), 429.13 (5). Anal. Calcd. for C30H18O3: C, 84.49;
H, 4.25; Found: C, 84.53; H, 4.23.

3. Results and discussion

We commenced our studies by reacting equimolar quantities of
homophthalic acid 1 and 2,3-diphenylacryloyl chloride 2 at 200 8C
with an aim of getting isocoumarin derivative, 3-(1,2-diphenylvi-
nyl)-1H-isochromen-1-one 3 [13] (Scheme 1 and Fig. S1 in
Supporting information). However, instead of obtaining the
expected product 3, compound 4, i.e. 3-phenyl-1H-isochromen-
1-one [14] and the novel fused hexacyclic isocoumarin framework
6, formed by the domino multicylization reaction, were isolated in
75% and 1% yields, respectively (Table 1, entry 1). Structure of the
novel fused ring system 6 was established through spectral (IR, 1H
NMR, 13C NMR, COSY, NOESY, MS) and single crystal X-ray analyses
(Fig. 2, Table 2). This unprecedented observation prompted us to
pursue further the domino cyclization reaction from both the
mechanistic as well as synthetic viewpoints. Accordingly, we
retroanalyzed the fused isocoumarin skeleton 6 (Fig. S2 in
Supporting information); it was hypothesized that some of the
2,3-diphenylacryloyl chloride 2 might be cyclized under the
conditions to give 2-phenyl-1H-inden-1-one 5 [15], which reacted
with the already observed 3-phenyl-1H-isochromen-1-one 4
through Michael addition reaction (Fig. 3). To check our hypothe-
sis, the concentration of 2 was gradually increased under the same
reaction conditions. To our delight, the yield of 6 significantly
 reaction with all possible byproducts.

 (h) 3 (%) 4 (%)a 5 (%)a 6 (%)a

0 75 0 1

0 45 0 20

0 28 0 30

0 7 0 46

0 0 3 67

0 0 Trace 68

xacyclic fused isocoumarin framework through selective domino
Chem. Lett. (2014), http://dx.doi.org/10.1016/j.cclet.2014.03.022
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Table 2
X-ray crystallographic data of 6.

Crystal data

Chemical formula C30H18O3

Mr 426.44

Crystal system, space group Monoclinic, P21/c

Temperature (K) 123

a, b, c (Å) 10.726 (5), 15.309 (7),

13.867 (7)

b (8) 113.005 (5)

V (Å3) 2095.8 (17)

Z 4

Radiation type Mo Ka
m (mm�1) 0.09

Crystal size (mm) 0.50 � 0.42 � 0.35

Data collection

Diffractometer Rigaku/MSC Mercury

CCD diffractometer

Absorption correction –

No. of measured, independent

and observed [I > 2s(I)]

reflections

16,708, 4757, 4470

Rint 0.031

(sin u/l)max (Å�1) 0.649

Refinement

R[F2> 2s(F2)], wR(F2), S 0.060, 0.121, 1.23

No. of reflections 4757

No. of parameters 298

No. of restraints 0

H-atom treatment H-atom parameters

constrained

Dimax, Dimin (e Å�3) 0.43, �0.18
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increased (1% ! 20%), while that of isocoumarin derivative 4
diminished (75% ! 45%) (Table 1, entry 2). Interestingly, when the
concentration of 2 was enhanced to 3 equivalents, the yield of 6
further increased (20% ! 30%), while that of 4 decreased
(45% ! 28%) (Table 1, entry 3). At this stage, it was assumed that
the formation of 2-phenyl-1H-inden-1-one 5 compared with 3-
phenyl-1H-isochromen-1-one 4 was slow and it needed more time
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COOH
2

200 oC

SOCl2
DMF

Ph

O

200 oCPh

C
ClO

Ph

O

Ph

O

O

Michael Ph

O

O

O

1

5

4

5 Mi

D

(i)

(ii)

(iii)

Fig. 3. Proposed mechanism
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to cyclize. Thus, the reaction time was increased from 2 to 3 h. It
was found that the yield of 4 pronouncedly decreased (28% ! 7%),
while that of 6 increased (30% ! 46%) (Table 1, entry 4).
Surprisingly, further increase in the time duration (3 ! 4 h) led
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 for the synthesis of 6.
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 the formation of compounds 5 and 6 in 3% and 67% yields,
spectively (Table 1, entry 5). It is pertinent to mention that
mpound 4 was not isolated under the conditions, indicating that
mpound 5 reacts with it very quickly as soon as it forms.
terestingly, a slight decrease in the time duration (4 ! 3.5 h)
ovided maximum yield (68%) of the fused compound 6 along with
trace amount of compound 5 as an impurity (Table 1, entry 6).

The attractive feature of this domino reaction is demonstrated
 the fact that four new chemical bonds and three new rings were
adily formed in domino fashion. In addition, work-up of the
action is very simple. Water and phenylacetylene are the only
products, which may be evaporated under the reaction
nditions/during the concentration of the reaction mixture,
aking the work-up very convenient simply by adding water/
tration/washing/recrystallization. Finally, it is important to
dress here that only a single diastereomer of 6 was detected
st by spectroscopic and then by X-ray diffraction analysis (Fig. 2
d Table 2).
The mechanism for this domino multicyclization reaction is

oposed and shown in Fig. 3. It can be divided into three steps. The
st step involves ring closure cascade reaction, which consists of
gioselective condensation of acyl chloride 2 with homophthalic
id 1 leading to A and HCl (2 to A), intramolecular cyclization (A to
, removal of CO2, phenyl acetylene and phenyl migration in a
ncerted fashion (B to C), and finally dehydration (C to 4). The
cond step includes intramolecular cyclization of 2 to give
termediate 5. In the third step, double Michael addition reaction
tween 4 and 5 leads to intermediate E through D, which after
robic oxidation, provides thermodynamically stable hexacyclic
sed isocoumatin framework 6. This mechanism has been
rtially supported by an experiment in which the isolated
termediates 4 and 5 were reacted at 200 8C under solvent and
talyst free conditions; the hexacyclic product 6 was again
nerated in 66% yield (Scheme S1 in Supporting information). To
e best of our knowledge, the synthetic strategy and mechanistic
quences described herein have not been reported so far.

 Conclusion

Conclusively, a novel three component domino reaction was
ed for the construction of unprecedented hexacyclic fused
coumarin framework. It is noteworthy for its cheap and readily
ailable starting materials, eco-friendly procedure, easy work-up
d potential biological applications of the resulting product. Our
ture efforts will be focused on using various computational and
perimental methods for exploring the biological applications of
is novel fused ring system. The facile one pot synthetic procedure
ay also be used to construct more useful and potential bioactive
rivatives of this fused isocoumarin skeleton.
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