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Abstract: A general method for the construction of disaccharidesin order to test the feasibility of this scheme, ®Sacetal1® was
containingD-septanosyl residues from acyclic intermediates has beeohosen as the model compour8tijeme 2 Following deacetylation
developed. The synthesis of an analogud-atetylD-lactosamine with  (NaOMe/MeOH), sequential treatment with excebstyldiphenylsilyl
a D-galactoseptanosyl unit has also been accomplished with the aim ohloride (TBDPS-CI) in pyridine and then f&/DMAP gave the @3-
determining the behaviour of this compound as a substrate for sevesilyl ether2 in high yield (86%). Careful desilylation with excess HF/
glycosyltransferases. pyridine in THRE? gave the 6-OH compourgiand was accompanied by
minimal acetyl group migration. Treatment of this compound with NIS/
The role of carbohydrates in biochemical processes is eliciting mucEfOH in CH,Cl, at -30°C gave the septanosuties gntICIpated. Thi
attention recentlf. Accordingly, the demand for synthetic NMR spectr.um Of_4 allowed unambiguous asggnmgnt of a .seven-
carbohydrates and their analogues has grown. The properties of Sevé"gl@mbered ring owing to the presence of downfield signals attributed to

l . .
membered sugars have remained mostly unexplored to date, in contrikg 3 -4 and -8! The signals co.rrespondl.ng to the'H-6 protons were
to five- and six-membered sugdrsAside from the challenge in observed at 3.69 and 4.15 ppm with a geminal coupling constant of 14.1

constructing such molecules, there is also the potential to derivil?- -ONg-range coupling between H-4 and one of the H-6 profoas (

information about carbohydrate-protein interaction. This letter desc:ribe%‘4 Hz) was also e"'“_'e”t- With t_h's result in hapd our aFtentlon wgs
the synthesis of disaccharides terminatingigalacto, p-gluco- and turned to the synthesis of selectively protected intermediates bearing

D-manneseptanosyl residues. The synthesis of an analogNeaogtyl saccharide aglycones.

D-lactosamine  (G@(1-4)GIcNAc, LacNAc) containing a EtS_ OMe
D-galactoseptanosyl residue is also presented. OAc c AcO
e —— K
. . AcO OMe
The synthesis ob-hexoseptanosides has not been extended beyond CHOC;\; ACO
monosaccharide  derivatives  ofD-galactose and D-glucose. 1 RZA 4
= AC

D-Glucoseptanoses have been obtained either by isopropylidination of 2 R = TBDPS
p-glucose? ring expansion of methyl 46-isopropylidenex-p- 3R=-H :lb
glucopyranosid®or fromp-glucose diethy! dithioacetflThe synthesis

of methyl D-galactoseptanoside was also achieved from acyclic
intermediateg.In general these methods suffer from either low yields or
a lack of applicability to more complex substrates. Elaboration of the
acyclic approach could allow the synthesis of seven-membered sugarfie 1-chloro-1-(ethylthio) compounés7'2 were synthesized from the
with a range of aglycones. corresponding diethyl dithioacetals by treatment with AcC{B&O
(100:1) at reflu Glycosylation of the accept@rwith 5, promoted by
AgOTf and 2,6-ditbutyl-4-methyl pyridine (DTBMP) in CbKCl, at

Scheme 2. a) 1. NaOMe, MeOH; 2. +-BuPh,SiCl, pyr.; 3. Ac,0, 86%; b)
HF/pyr, THF, 0 °C-> RT, 70%; c) NIS/TfOH, CH,CH,, -30 °C— RT, 85%

We recently presented a method for the synthesishafxofuranosides ] X
from acyclic precursors in which an unprotec@Gacetal could be ~30°C, gave thed,Sacetal12 (81%) Scheme 3 Conversion of this

cyclized to ap-furanoside with high stereo- and regioselectifine ~ compound into the '60-TBDPS derivativel3, and then the '6OH
cyclization of differentially protected intermediates clearly presents th&°mpound 14, was accomplished as for the monosaccharide
possibility of access to sugars of other ring sizéshéme L With Likewise, the cyclization ofl4 proceeded smoothly to give the
regard to seven-membered rings, this strategy involved the synthesis B@alactoseptanosides in excellent yield (89%). The 4-OH accepgor
an O,Sacetal selectively protected at the primary alcohol. FollowingVas /S0 glycosylated Hyto give 16 (56%). In this case however, the
selective deprotection, treatment with a thiophilic promotor would bePPnversion of16 to the &O-TBDPS derivativel7 was not easily

expected to result in the formation of a septanoside. accomplished, requiring over 24 h to go to completion. Desilylation
gavel8 (65%) which was in turn converted into the septanostim

1 3
R e good yield (76%). ThéH NMR spectra ofL5 and 19 confirmed the
RO o selective formation of the-galactoseptanosyl residtr.
RO
SEt EtS_ Cl EtS_ . Cl EtS_ .Cl
-Rf —R? OAc OAc AcO
Rio AcO AcO AcO
ORO o R @ heo OAc 322 8:5
Rzop" RO Ro ™o CHy0AC CH,OAc CHz0Ac
R0 OR R0 _oR® 5 6 7
o
RO
RO ° Attention was next turned to derivativesmlucose and-mannose.
The D-gluco donor 6 was coupled to the accept@d with AgOTf
= aglycone promotion, and the produ2b was elaborated to tieglucoseptanoside

Scheme 1 23 (Scheme 5. Glycosylation of theD-manno acceptoll with the
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onc et AcO In both cases, the-®H intermediate22 and26 were not isolated but
OAc oac § cyclized directly to thed-septanoside®3 and 27, respectively. This
AcO 9 AcO © greatly reduced acetyl migration and hence the presence of by-products
RO OAc AcO 0.

corresponding to other ring-sizes. In contrast to the
0 D-galactoseptanosides, thd NMR spectra 023 and27 did not exhibit
long range coupling between Hahd -6.13

12 R=Ac
¢ :Ia,89%
13 R =TBDPS

:' b, 67%

Scheme 3. a) 1. NaOMe, MeOH; 2. +-BuPh,SiCl, pyr.; 3. Ac,0; b) HF/pyr,
THF, 6°C — RT; c¢) NIS/TfOH, CH,CH,, -30°C —» RT

The use of donors prefunctionalised at the primary alcohol was also
examined. Glycosylation of acceptddsand 10 with the 1-bromo-1-
(ethylthio) donor 28 resulted in average to low vyields of the
correspondingO,Sacetals,16 (65%) and28 (37%), respectively. In
contrast, th®-mannose derivative9 was not effective in glycosylating

the acceptof0. The corresponding 1-chloro compouget® however,
glycosylated10 to give 25, with virtually the same yield (63%) and
stereoselectivity (4:3) as the pentaacetate dénor

14 R=H

g

16 R = Ac OBn
a, 60%
17 R =TBDPS ACO O(CH,)sCO;Me

EtS_ .Br EtS. R
b, 67‘7 AcHN
‘L~ 18 R=H Ohc A0 29 R=Br
28 AcO AcO

¢, 76% AcO oaAc 30 R=Cl

OBn OAc OAc

CH,OTBDPS CH,OTBDPS
O(CH,)gCOMe
ActiN Finally, the deprotection df9 was carried out (NaOMe, MeOH; Pd/C,

H,, MeOH, AcOH) yielding the unprotected disacchadde(Scheme
6).16 This compound, an analogue of LacNAc, is under evaluation as a
potential substrate for a series of glycosyltransferases.

Scheme 4. a) 1. NaOMe, MeOH; 2. t-BuPh,SiCl, pyr.; 3. Ac,0; b) HF/pyr,
THF, 0°C — RT; c) NIS/TfOH, CH,CH,, -30°C — RT

donor7 proceeded in acceptable yield (58%), however the pratict Ri0 o OR,

was obtained as a mixture (4:3) of diastereoisomers. This outcome was 7.0 OR O/&/

in contrast to a previous result in which the treatment of the acdptor ! RO RO O(CHz)gCOMe
with 7 gave rise to only one compoufdCyclization of the BOH 19 R, = Ac R, = Bn
intermediate26 also gave rise to a mixture pfmannoseptanosidées. a 5o 31 Ri Ry=H L

Interestingly, the ratio of anomers was now determined to be 4:1 in

favor of thea-anomer. Scheme 6. a) 1. NaOMe, MeOH; 2. Pd/C, H,, MeOH, AcOH

o] o OBn
X Ty
e} BnG — O(CH,)gCO,Me
o] cl
o}
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Scheme 5. a) 1. NaOMe, MeOH; 2. +-BuPh,SiCl, pyr.; 3. Ac,O; b) HR/pyr, THF, 0°C — RT; c)
NIS/TfOH, CH,CH,, -30°C — RT
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