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Abstract: Easily available 1,3-bis(silyl)allyl compounds react with epoxides under Lewis acid catalysis to 
give interesting synthetic building blocks. The course of reaction depends on the stabilization of cationic 
intermediates by the silicon 13-effect. © 1998 Elsevier Science Ltd. All rights reserved. 

Ring opening of epoxides by 1,3-bis(silyl)-substituted allyl anions is known to give 3,5-bis(silyl)-4-alkenols, 

i. e. bis-silylated bishomoallyl alcohols) However, the analogous Lewis acid catalyzed reaction has so far not 

been reported. In fact, the reactivity of  the weak Lewis acids zinc chloride diethyl ether complex, 

tin tetrachloride or boron trifluoride diethyletherate are not sufficient to effect a reaction. However, we have 

now found that the stronger Lewis acid titanium tetrachloride allows to isolate in moderate to good yields 

5-silyl-3-alkenols, i. e. derivatives of  homoallyl alcohols as single diastereomers. Monosubstituted epoxides 

give better yields than 1,2-disubstituted examples (Scheme 1, Table 1).2 

a ~ R~OH 
R ~ O  + M e 3 S i ~ S i M e 3  R2,,,./~.~,.......~SiMe 3 
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1 2-6 

Scheme 1. - a: TiCh, CH2C12, -78 °C, 19-66 % 

Table 1. Lewis Acid Supported Reactions of 1 with Epoxides. 

Compound R l R 2 Yield [%] 

2 H H 66 

3 H CH3 61 

4 H C2H5 53 

5 -(CH2)3- 33 

6 -(CH2)4- 19 
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The resulting C-C double bond adopts the (E) configuration. The attack on the epoxide occurs regioseleetively 

at the sterically hindered carbon atom. A plausible mechanism is shown in Scheme 2. 

2°J ' R.,~ O TiCI4 ~ - o 1 
~)TiCI 4 

workup 

8 SiUe3 L 9 Siae3J SiNe3 

Scheme 2. 

Intermediate 7 explains the SNl-type fashion of ring opening. The subsequent attack of the allylsilane gives 

species 8 with very efficient stabilization of the positive charge by the silicon 13-effect. 3 Migration of the more 

favourably oriented "inner" silyl group leads to 9. 

Considering the successful formation of 2-6, the corresponding intramoleeular reaction of bis(silyl)-substituted 

epoxides 11, 14, 18 is of particular interest. Precursor of epoxide 11 is ketone 10, * which is obtained from 

cyclohexene oxide by addition of lithiated 1 t and subsequent oxidation with PDC under standard conditions 

(69 %). Ketone I0 is then treated with chloro(iodo)methane and n BuLi giving 11 in good yield (Scheme 3). 5 

The synthesis of silyl-substituted epoxides 14 and 18 has been reported previously. 6 

CH2CI L THF._ SiMe3 
-78 *C, 89 %~ 

$iMe3 SiMe3 

10 11 

Scheme 3. 

Treatment of epoxides 11, 14, 18 with Lewis acids reveals the possibility of different reaction pathways. 7 Dienol 

13 is isolated from the reaction of epoxide 11 in the presence of TIC14 (7 %) or, more efficiently, of BF3.OEt2 

(48 %). The observed ring contraction demonstrates that the positive charge is more effficiently stabilized by 

silicon in 12 than in a tertiary carbocation analogous to 7 (Scheme 4). 

a 

SiMe 3 \SiMe 3 
12 13 

Scheme 4. - a: TiCL~ (7 %) or BF~.OEtz (48 %), CHzCI2, -85 °C 
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BF3*OEt2 leads to polymerization of epoxide 14, but reaction with TiCh gives olefm 17 in 45 % yield. We 

assume that, after initial epoxide opening, 1,3-eycloelirnination of the silyl group give cyclopropane 16; under 

the reaction conditions, this is then isomerized to product 17 (Scheme 5)? 

• ef oTic,, Tic,f- .. 
SiMe3 ~ ~ k ~  ~--SiMe 3 

SiMe 3 SiMe3 

14 15 16 

Scheme 5. - a: TiCI4, CH2C12, -85 °C, 45 % 

H O ~ S i M e 3  
-TiCI 4 

17 

18 19 

Scheme 6. 

TiCI 4, CH2CI 2 

-85 *C, 42 % 

Me ~OH 
Me3Si ~ O H  
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Treatment of epoxide 18 with BF3,OEt2 also leads to polymerization. However, reaction with TIC14 gives diol 

19. Obviously, the additional methyl group prevents ring closure of type 15-->16. Instead, the intermediate of 

type 15 is hydrolyzed on workup with concomitant protodesilylation (Scheme 6). 
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