

Tetrahedron Letters 39 (1998) 2223-2226

TETRAHEDRON LETTERS

SYNTHETIC STUDIES TOWARD DIAZONAMIDE A. PREPARATION OF THE BENZOFURANONE-INDOLYLOXAZOLE FRAGMENT

Peter Wipf* and Fumiaki Yokokawa

Department of Chemistry, University of Pittsburgh, Pittsburgh, Pennsylvania 15260, U.S.A.

Received 22 December 1997; accepted 15 January 1998

<u>Abstract</u>: The benzofuranone-indolyloxazole fragment of the polycyclic marine natural product diazonamide A was prepared from tryptamine. The oxazole ring was synthesized from an α keto-indole via cyclodehydration with Ph₃P/Cl₃CCCl₃, and after selective Stille biaryl coupling with 2-iodo-6-stannylphenol, the benzofuranone ring was constructed by an intramolecular Heck annulation of an α , β -unsaturated aryl ester. © 1998 Elsevier Science Ltd. All rights reserved.

Diazonamide A (1) is a secondary metabolite of the colonial ascidian *Dizona chinensis*, a marine species collected from the ceilings of small caves in the Philippines.¹ It has potent *in vitro* activity against HCT-116 human colon carcinoma and B-16 murine melanoma cancer cell lines, with IC₅₀ values <15 ng/mL. The polycyclic diazonamide and its congeners represent an entirely new class of marine natural products. Especially noteworthy is the presence of two directly linked halogenated oxazoles² in the polycyclic skeleton which is entrapped as a single atropisomer. Diazonamide A is one of the structurally and biologically most attractive marine natural products isolated in the past few years. As a part of our program toward the synthesis and study of bis-oxazole containing natural products,³ we have recently embarked on the total synthesis of diazonamide A.⁴ In this paper, we describe our progress toward the construction of the benzofuranone-indolyloxazole moiety of diazonamide A.

Selective protection of tryptamine 2 with Cbz-Cl at the primary amine followed by DDQ oxidation under aqueous conditions⁵ provided the keto-indole 3 in 73% yield (Scheme 1). Regioselective thallation of the indole C(5)-position with thallium tris-trifluoroacetate followed by treatment with iodine and Cul⁶ gave iodoindole 4 in 65% yield. After removal of the Cbz-group with

HBr-AcOH, coupling of the resulting HBr salt with BDPS-protected glycolic acid **5** in the presence of diethylphosphoryl cyanide (DEPC)⁷ afforded the β -keto amide **6** in 82% yield. According to our oxazole synthesis protocol,^{3,8} cyclodehydration of **6** with Ph₃P and Cl₃CCCl₃ in the presence of Et₃N followed by the protection of the indole nitrogen gave indolyloxazole **7** in 78% yield.⁹

Scheme 1.

Palladium(0)-catalyzed monocoupling between indolyloxazole 7 and arylstannane 8 derived from 2,6-diiodophenol¹⁰ required considerable optimization and was accomplished in the presence of 40 mol% of Ph₃As and 20 mol% of Cul as a co-catalyst (Scheme 2).¹¹ Deprotection of the MOM group in an HCl/ether/methanol/CH₂Cl₂ solution gave a 1:1 mixture of 9 and 7. The desired coupling product 9 was purified in 28% yield by chromatography on SiO₂, and unreacted 7 was recovered in 29% yield. Longer reaction times for the Stille-coupling, or the use of a Me₃Sn-analog of 8 did not lead to any significant yield improvement. Further segment condensation of phenol 9 and acid 10¹² set the stage for the construction of the benzofuranone ring and the quaternary center of diazonamide A. Under optimized reaction conditions, the intramolecular Heck reaction¹³ of 11 in the presence of Pd₂(dba)₃•CHCl₃ complex (10 mol%), BINAP (23 mol%), and Ag₃PO₄ (1.2 equiv) in *N*,*N*-dimethylacetamide at 100 °C proceeded cleanly to give benzofuranone 12 in 74% yield. The use of (*R*)-BINAP led to an asymmetric induction of 14% ee at the stereogenic quarternary center in 12.¹⁴ Other chiral Pd-ligands, including (*R*)-Tol-BINAP,¹⁵ (*R*,*R*)-DIOP,¹⁶ (*R*,*S*)-BPPFA,¹⁷ Cl₂Pd-(*R*)-BINAP,¹⁸ and (*S*)-BINAs,¹⁹ gave mostly similar ee's as well as reduced chemical yields (Table 1).

Scheme 2.

Table 1. Ligand effects in the asymmetric Heck coupling of 11.

ligand (10 mol%)	T [°C], time [h]	yield of 12 [%]	ee [%] ¹⁴
(<i>R</i>)-BINAP	100, 22	74	14
(R)-BINAP	80, 59	47	19
(R)-Tol-BINAP	100, 21	67	19
(<i>R,R</i>)-DIOP	100, 21	27	16
(<i>R,S</i>)-BPPFA	100, 19	42	3
Cl ₂ Pd-(<i>R</i>)-BINAP	100, 14	72	12
(S)-BINAs	100, 20	19	3

In conclusion, we have demonstrated an attractive synthetic strategy for the synthesis of the benzofuranone-indolyloxazole fragment of diazonamide A. Starting from readily available tryptamine, the poly-heterocyclic **12** was obtained by sequential oxazole annulation, Stille coupling, and intramolecular Heck cyclization in 8% overall yield.²⁰ Further studies toward the total synthesis of this natural product will be reported in due course.²¹

Acknowledgment. This work was supported by the National Institutes of Health (GM 55433). We also acknowledge the Alfred P. Sloan and Camille Dreyfus Foundations for financial support of our program.

References and Notes

- 1. Lindquist, N.; Fenical, W.; Van Duyne, G. D.; Clardy, J. J. Am. Chem. Soc. 1991, 113, 2303.
- 2. For a partial compilation of other oxazole-containing natural products, see: Wipf, P.; Venkatraman, S. Synlett **1997**, 1.
- 3. Hennoxazole A: Wipf, P.; Lim, S. J. Am. Chem. Soc. **1995**, *117*, 558; Wipf, P.; Lim, S. Chimia **1996**, *50*, 157. Muscoride A: Wipf, P.; Venkatraman, S. J. Org. Chem. **1996**, *61*, 6517.
- To date, there have been three publications concerning synthetic approaches to diazonamide A: (a) Moody, C. J.; Doyle, K. J.; Elliott, M. C.; Mowlem, T. J. Pure Appl. Chem. 1994, 66, 2107. (b) Konopelski, J. P.; Hottenroth, J. M.; Oltra, H. M.; Veliz, E. A.; Yang, Z.-C. Synlett 1996, 609. (c) Moody, C. J.; Doyle, K. J.; Elliott, M. C.; Mowlem, T. J. J. Chem. Soc. Perkin Trans. 1 1997, 16, 2413.
- 5. Oikawa, Y.; Yoshida, T.; Mohri, K.; Yonemitsu, O. Heterocycles 1979, 12, 1457.
- 6. Somei, M.; Yamada, F.; Kunimoto, M.; Kaneko, C. Heterocycles 1984, 22, 797.
- 7. Takuma, S.; Hamada, Y.; Shioiri, T. Chem. Pharm. Bull. 1982, 30, 3147, and references cited therein.
- 8. Wipf, P.; Miller, C. P. J. Org. Chem. 1993, 58, 3604.
- 9. We thank Dr. S. Lim for preliminary studies on the preparation of oxazole 7.
- 10. Wollett, G. H.; Davis, F. M.; Jones, C. N.; Neill, M. J. Am. Chem. Soc. 1937, 59, 861.

- (a) Levin, J. I. *Tetrahedron Lett.* **1993**, *34*, 6211. (b) Liebeskind, L. S.; Fengl, R. W. *J. Org. Chem.* **1990**, *55*, 5359. (c) Farina, V.; Kapadia, S.; Krishnan, B.; Wang, C.; Liebeskind, L. S. *J. Org. Chem.* **1994**, *59*, 5905.
- 12. Maccarone, E.; Mamo, A.; Perrini, G.; Torre, M. J. Heterocyclic Chem. 1981, 18, 395.
- For recent reviews, see: (a) Shibasaki, M.; Boden, C. D. J.; Kojima, A. *Tetrahedron* 1997, *53*, 7371. (b) de Meijere, A.; Meyer, F. E. *Angew. Chem., Int. Ed. Engl.* 1994, *33*, 2379. For a related benzofuranone cyclization, see: Anacardio, R.; Arcadi, A.; D'Anniballe, G.; Marinelli, F. *Synthesis* 1995, 831.
- 14. Enantiomeric excess was determined by chiral HPLC of the *O*-MTPA-ester or the free alcohol derivative of 12 on a Chiralcel OD column.
- 15. Takaya, H.; Mashima, K.; Koyano, K.; Yagi, M.; Kurnobayashi, H.; Taketani, T.; Akutagawa, S.; Noyori, R. *J. Org. Chem.* **1986**, *51*, 629.
- 16. Kagan, H. B.; Dang, T. P. J. Am. Chem. Soc. 1972, 94, 6429.
- 17. Hayashi, T.; Mise, T.; Fukushima, M.; Kagotani, M.; Nagashima, N.; Hamada, Y.; Matsumoto, A.; Kawakami, S.; Konishi, M.; Yamamoto, K.; Kumada, M. Bull. Chem. Soc. Jpn. **1980**, *53*, 1138.
- 18. Hayashi, T.; Matsumoto, Y.; Ito, Y. J. Am. Chem. Soc. 1988, 110, 5579.
- 19. Kojima, A.; Boden, C. D. J.; Shibasaki, M. *Tetrahedron Lett.* **1997**, *38*, 3459. We thank Prof. Shibasaki for a sample of (S)-BINAs.
- 20. All new compounds were fully characterized by ¹H NMR, ¹³C NMR, IR and HRMS.
- 21. According to our preliminary studies, the chlorination of oxazole and indole rings can be achieved with NCS-benzoylperoxide in CCl₄:

