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ABSTRACT: A well-defined low-coordinate β-
diketiminatocobalt(II) alkyl complex is reported as an active 
precatalyst for the selective alkene cyclohydroamination of unpro-
tected primary amines under mild conditions (rt-90 °C). The 
reaction mechanism has been investigated by deuterium-labelling, 
kinetics and stoichiometric experiments and in-depth computa-
tional DFT studies. On the basis of these studies, we propose a 
stepwise non-insertive mechanism that features a rate-determining 
nucleophilic attack of the amido group of a monomeric cobalt(II) 
amidoalkene-aminoalkene adduct intermediate to the non-
coordinated pendant alkene followed by a rapid proton transfer 
from the coordinated aminoalkene to the cyclized adduct. 

Over the years, the catalytic alkene hydroamination − the di-
rect addition of an amine across a carbon-carbon double bond 
− has received considerable interest among the scientific commu-
nity as an appealing route to valuable nitrogen-containing com-
pounds from ubiquitous amines and olefins.1 The general concern 
for sustainable metal catalysis has recently stimulated the explora-
tion of earth-abundant, first-row late transition metals for the 
development of eco-compatible hydroamination catalysts with a 
wide applicability.1c Although still in its infancy, this exploration 
has already led to outstanding advances with Zn,2 Cu3 or Fe4 
metal relying on either a classical2,3a-b,4a-b or a formal hydroamina-
tion approach such as metal-hydride mediated umpolung electro-
philic amination3c,4c or hydrogen atom4d transfer. However, alt-
hough these reports by formal hydroamination have advanced the 
state of the art, they are far from the concept of atom and step 
economy of the original hydroamination reaction, and so progress 
in the direction of “truly” hydroamination systems from earth 
abundant transition metal is still in high demand. In this context, 
there is, to our knowledge, no report on the cobalt-catalyzed 
hydroamination of unactivated alkenes. Only a single but interest-
ing report by Shigehisa et al. has disclosed a Co-catalyzed intra-
molecular C-N bond formation by a closely related formal hy-
droamidation reaction of protected amines bearing electron-
withdrawing groups (EWG) and requiring a substoichiometric 
amount of oxidizing electrophilic fluorine agent and reducing 
silane agent (Scheme 1 (a)).5 Herein, we report the first example 
of cobalt-catalyzed alkene hydroamination of unprotected primary 
amines under co-reagent-free conditions using well-defined low-
coordinate β-diketiminatocobalt(II) complexes (Scheme 1 (b)). 

 

Scheme 1. (a) Seminal Work on Related Co-catalysed N-H 

Addition on Unactivated Alkenes; (b) This Work 

Some of us have recently reported that structurally defined β-
diketiminatoiron(II)-alkyl or -amido complexes, such as 1a-Fe 
(Scheme 2), have the ability to catalytically promote the highly 
selective cyclohydroamination of primary aliphatic alkenylamines 
at mild temperatures, as the first example of iron-catalyzed hy-
droamination of such electronically unbiased amines.4a With our 
concern in base metal catalysis, we have explored the reactivity of 
analogue complexes derived from cobalt in alkene hydroamina-
tion. 

 

Scheme 2. Structures of ββββ-diketiminatometal(II) complexes  

Firstly, the β-diketiminatocobalt(II) alkyl complex 1a-Co 
(Scheme 2) was prepared from 2,4-bis(2,4,6-
trimethylphenylimido)pentane, CoCl2 and LiCH2SiMe3 by a two-
step metathesis route (via the formation of chloro ate complex 
S1).6 Complex 1a-Co was isolated as a dark-brown air-sensitive 
crystalline solid that can be stored for weeks at rt without noticea-
ble decomposition. Solid-state analysis of a single crystal reveals 
that the four-coordinate cobalt atom adopts a pseudotetrahedral 
geometry with a smaller trigonal pyramidal distortion than that 
found in 1a-Fe (τCo= 0.31 vs τFe= 0.55)6 (Figure 1).7,8 
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Figure 1. ORTEP drawing of 1a-Co (left) and [1b-Co]2 (right). 
Thermal ellipsoids are shown at the 30% level. H atoms have 
been omitted for clarity. 

Our initial evaluation of the catalytic efficiency of 1a-Co fo-
cused on the reaction of 2a as a benchmark reaction under our 
previously optimized conditions for the iron-catalyzed hydroami-
nation.4a To our surprise, heating 2a in toluene at 90 °C in the 
presence of 10 mol % of 1a-Co leads to the formation of 3a, 4a, 
5a and 6a in a 4:9:18:61 ratio respectively after 92% conversion 
(Table 1, entry 1). This result is in strong contrast with 1a-Fe 
which delivers under identical conditions the hydroamination 
product 3a in 80% yield with no trace of olefin isomerization 
product 6a.4a To our delight, introducing a phenyl ring at the 
terminal position of the C=C bond of the substrate prevents the 
alkene isomerization to occur. 

Table 1. Screening of Substrates and Conditions of the 

Cyclohydroamination reaction
a 

NH2R1

R1

NHR1

R1

NR1

R1

NH2R1

R1+ +

2 3 4 5

R2 R2 R2
R2

NH2R1

R1

6

R2+

 

entry substrate 2 
(%)b 

3 

(%)b 

4 

(%)b 

5 

(%)b 

6 

(%)b 

1c 

 

8 4 9 18 61 

2d
 

 

5 93 2 0 0 

3e 25 72 2 0 0 

4f [1b-Co]2 8 90 1 1 0 

5g [1b-Co]2 56 0 44 0 0 

6g,h [1b-Co]2 58 25 17 0 0 
aReaction conditions: [2] = 0.96 M, 10 mol % 1a-Co, toluene, 

90 °C, 24 h unless otherwise stated. bDetermined by GC analysis. 
c 3 h. d [2b] = 0.81 M. e[2b] = 0.73 M, rt, 47 h. f5.55 mol % [1b-

Co]2 as catalyst. g[[1b-Co]2] = 2.6 mM, toluene, 90 °C, 24 h. 
hWith cyclopentylamine (1 equiv per Co). 

Indeed, the hydroamination of 2b catalyzed by 10 mol % of 
1a-Co provides 3b in 93% yield as almost the sole product with-
out any sign of substrate isomerization (Table 1, entry 2). The 
reaction can also be run at rt with similar selectivity despite a 
lower efficiency (Table 1, entry 3). By this methodology, various 
five- and six-membered nitrogen-heterocycles featuring a phenyl 
ring attached to the terminal alkene which is either unsubstituted 
(3b-d, 3j) or substituted by an halogen atom (3f-h), an alkyl (3e) 
or a methoxy (3i) group were isolated in convenient yields from 
the corresponding aminoalkenes (Table 2). The exo-cyclization 
also occurs efficiently from primary amines bearing a dime-
thylsubstituted allene (2k) or an alkyne (2l-m) functionality. 
Nevertheless, up to know, the reaction does not proceed with 
aminoalkenes unbiased towards cyclization or having a trisubsti-
tuted olefin.6 

Table 2. Reaction Scope
a 

NH2R1

R1

NHR1

R1

2b-m 3b-m

R2

R3

R2

R3

10 mol % 1a-Co

toluene, 90 °C

 

  
 

  

aReaction conditions: [2] = 0.81 M, 10 mol % 1a-Co, toluene, 
90 °C, 24 h. RMN yield determined using an internal standard 
unless otherwise stated and isolated yield in brackets. bDeter-
mined by GC analysis. 

To investigate the reaction mechanism, kinetic analysis of the 
cyclohydroamination of 2b was performed by monitoring the 
concentration of substrate 2b over the course of the reaction. Plots 
of ln[2b] vs time are linear to at least 3 half-lives over a 0.51–1.41 
M initial concentration range and are consistent with first-order 
kinetics in [2b]. A linear relationship between kobs and [1a-Co] 
over a fourfold concentration range ([1a-Co] = 0.041-0.161 M) 
indicates a first order dependence in catalyst concentration and 
provides the empirical rate law displayed in eq 1 with kH (363 K)= 
6.6 × 10-4 M-1 s-1. 

�
d����

dt
� 	
���_���

������																														�1�	 

This second-order rate law may reflect mono-association of 
the substrate with a monomeric cobalt species during the rate-
limiting step and is consistent with several reported mechanisms 
such as a proton-assisted concerted C-N/C-H bond-forming 
mechanism9a-d or a stepwise insertive mechanism9e,4a with a turn-
over-limiting aminolysis event. Further measurement of the rate 
of cyclization of N-deutero-amine [D2]-2b with 1a-Co gives kD 

(363 K) = 6.8 × 10-4 M-1 s-1 and leads to no observation of primary 
kinetic isotope effect (KIE) (kH/kD = 0.97 (90 °C)). Eyring analy-
sis for the cyclization of 2b over a 353-383 K temperature range 
afford the following activation parameters: ∆H≠ = +15.9 kcal mol-

1, ∆S≠ = −29.7 cal mol-1 K-1. 

To gain a better insight into the nature of the cyclization step, 
we endeavor to isolate the initial catalyst−substrate intermediate 
and study its reactivity. The stoichiometric reaction of 1a-Co and 
2b at rt leads to the isolation of cobalt amido complex [1b-Co]2 as 
a dark green solid in 89% (Scheme 2). X-ray diffraction analysis 
confirms the solid-state structure of [1b-Co]2 as a centrosymmet-
ric amido-bridged dimer (Figure 1). The stoichiometric reactivity 
of isolated [1b-Co]2 was then tested by heating a toluene slurry of 
the dimer for 24 h at 90 °C. GC analysis reveals the formation of 
4b in 44% yield as the sole insertion product, concomitantly with 
unreacted 2b in 56% yield (Table 1, entry 5). It is worth noting 
that [1b-Co]2 is also capable of catalytically mediating the hy-
droamination of 2b with similar efficiency as its alkyl precursor 
(Table 1, entries 4 vs 2) (vide infra for more details on the selec-
tivity change). As C-N bond formation clearly occurs directly 
from [1b-Co]2 in the absence of additional proton source, this 
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stoichiometric experiment militates against a proton-assisted 
concerted mechanism. The stereochemistry of the cyclization was 
further elucidated by 1H NMR 3JH,H coupling constant measure-
ments of the tosylated products arising from cyclization of N-
deutero-amines [D2]-(E)-3d and [D2]-(Z)-3d. These experiments 
provide exclusively products with deuterium located at the β-
position of the nitrogen atom and with a formal syn-addition of 
the N-D bond across the C=C bond.6  

The reaction mechanism for 2b was also investigated by 
means of DFT calculations.10 Among the mechanisms evaluated, 
the one with the most feasible Gibbs energy profile is shown in 
Figure 2. 11 The relative stability of doublet and quartet spin states 
were systematically evaluated obtaining the later as the most 
stable one.6 The mechanism can be divided in two parts, one for 
generating the active species, III_A3, and another for the catalytic 
cycle itself. The generation of the active species, III_A3 takes 
place by a proton transfer from the coordinated reactant to the –
CH2SiMe3 ligand, I_A1 (Figure 2 and Scheme 3). This step pro-
duces intermediate II_A1, with a Gibbs energy barrier of 29.2 
kcal mol-1, generating an amido group ligand and SiMe4.

12 The 
formed SiMe4 of II_A1 is then replaced by a second aminoalkene 
reactant molecule producing active species III_A3 at −11.4 kcal 
mol-1. In turn, intermediate II_A1 can also form [1b-Co]2 that 
probably corresponds to the resting state of the catalyst once the 
reactant is consumed (Figure 2 and Scheme 3).13 Its optimized 
structure resembles that of X-ray analysis. This species can cata-
lyze the reaction by forming back the monomeric species (Table 
1, entry 4). 

I_A1
II_A1

TS_I_A1

29.2

0.7

[1b-Co]2

0.0

III_A3

IV_A3

VI

TS_III_A3

TS_IV_A3

−11.4
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−17.1
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−17.4
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Figure 2. Calculated Gibbs energy profile (T = 298 K (in brackets 
T = 363K); energies in kcal mol-1) 

The catalytic cycle contains three steps: (i) intramolecular cy-
clization by nucleophilic attack of coordinated amido group to the 
non-coordinated alkene, (ii) proton transfer from a second coordi-
nated aminoalkene to the cyclized amino ligand, and (iii) substitu-
tion of the product by a new reactant (Scheme 3). The C-N bond 
formation step, with a relative barrier of 22.6 kcal mol-1, corre-
sponds to the rate determining cyclization step, and is in very 
good agreement with ∆G≠=24.6 kcal mol-1 calculated from exper-
imental activation parameters at T = 298.15 K. The large and 
negative activation entropy determined experimentally also agrees 
with a step that involves a cyclization process. Intermediate 
IV_A3, which lies at 1.2 kcal mol-1, does not have direct interac-
tion between Co and C2 (distance of 3.649 Å; Scheme 3 and 
Figure S11). From this intermediate, there is a proton transfer 
between the coordinated aminoalkene and the cyclized amino 
ligand, with an energy barrier of 5.6 kcal mol-1. It generates in-
termediate VI, with a relative Gibbs energy of −17.1 kcal mol-1, 
that has the hydroamination product coordinated. Replacement of 

the product by a new aminoalkene molecule closes the catalytic 
cycle (Scheme 3). This proposed stepwise non-insertive mecha-
nism is the most favorable one among, inter alia, the insertive 
mechanism. All the attempts to find a concerted non-insertive 
pathway has conducted to this stepwise mechanism. The absence 
of KIEs is explained by the fact that the proton transfer step 
(TS_IV_A3 at 6.8 kcal mol-1) is lower in energy than the cycliza-
tion step (TS_III_A3 at 11.2 kcal mol-1) (Figures 2 and 3). 

 

Figure 3. Optimized structures for TS_III_A3 (left) and 
TS_IV_A3 (right) (distances in Å). 

The observation of a syn-addition of N-D bond across the C=C 
bond, can be justified by the proposed mechanism if the rotation 
around C1-C2 bond (see IV_A3 in Scheme 3) is higher in energy 
than the proton transfer. Then, proton transfer would be fast 
enough to avoid rotation around C1-C2 bond, producing a formal 
syn-addition of the N-H bond across the C=C bond. The relative 
barrier for the proton transfer is 5.6 kcal mol-1, whereas the rota-
tion is estimated to be 14.4 kcal mol-1, thus explaining the exper-
imental observation of a syn-addition. The mechanism is also in 
agreement with the experimental observation that the reaction of 
[1b-Co]2 in the presence of cyclopentylamine (1 equiv) as an 
additional proton source generates 3b (and 4b) (Table 1, entry 6). 

LCo

NH

rate-limiting

nucleophilic
amido attack

proton transfer

1a-Co

2b

I_A1

LCo
NH2R

1

CH2SiMe3

LCo
NHR1

CH3SiMe3

II_A1

2b

SiMe4

NH2R
1

Ph

[1b-Co]2

SiMe4

III_A3

LCo

HN C1

C2

NH2R
1
Ph

IV_A3

H
LCo

HN

NHR1

Ph

H

H

TS_III_A3

VI

TS_IV_A3

2b

3b

amine
exchange

proton
transfer

2b

2b

 

aNH2R
1 = 2b, L represents β-diketiminate ligand. 

Scheme 3. Proposed Reaction Mechanism
a 

In conclusion, we have established that novel well-defined β-
diketiminatocobalt(II) alkyl complex 1a-Co is an efficient precat-
alyst for the hydroamination of unprotected primary amines teth-
ered to an aryl alkene under mild and co-reagent free conditions. 
This is the first example of cobalt-catalyzed alkene hydroamina-
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tion reaction of unprotected and electronically unbiased primary 
amines. DFT studies, supported by stoichiometric reactivity ex-
periments, have shown that the reaction operates through a step-
wise non-insertive mechanism as original alternative to the classi-
cally reported hydroamination mechanisms. This mechanism 
entails nucleophilic attack of the amido group of monomeric 
cobalt(II) amidoalkene-aminoalkene adduct intermediate to the 
non-coordinated pendant alkene as the rate-determining cycliza-
tion step associated subsequently to a rapid proton transfer from 
the coordinated substrate to the resulting cyclized adduct. This 
proposed mechanism is in agreement with the empirical second-
order rate law, no KIE observation, the syn-addition of N-D bond 
across the C=C bond, and the activation parameters determined 
experimentally. The outcome of this work will help guide the 
rational design of base metal catalysts with improved reactivity 
and alternative selectivity patterns. Further studies in this direc-
tion are currently ongoing. 
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R. H.; Schafer, L. L. Mechanistic Elucidation of Intramolecular Aminoal-
kene Hydroamination Catalyzed by a Tethered Bis(ureate) Complex: 
Evidence for Proton-Assisted C–N Bond Formation at Zirconium. J. Am. 
Chem. Soc. 2011, 133, 15453-15463. (c) Dunne, J. F.; Fulton, D. B.; 
Ellern, A.; Sadow, A. D. Concerted C−N and C−H Bond Formation in a 
Magnesium-Catalyzed Hydroamination. J. Am. Chem. Soc. 2010, 132, 
17680-17683. (d) Arrowsmith, M.; Crimmin, M. R.; Barrett, A. G. M.; 
Hill, M. S.; Kociak-Köhn, G.; Procopiou, P. A. Cation Charge Density 
and Precatalyst Selection in Group 2-Catalyzed Aminoalkene Hydroami-
nation. Organometallics 2011, 30, 1493-1506. (e) Tobisch, S. Mechanistic 
elucidation of the yttrium(III)-catalysed intramolecular aminoalkene 
hydroamination: DFT favours a stepwise σ-insertive mechanism. Dalton 

Trans. 2012, 41, 9182-9191. 
(10) Related DFT analysis of hydroamination reactions: (a) Couce-

Rios, A.; Lledós, A.; Ujaque, G. The Origin of Anti-Markovnikov Regi-
oselectivity in Alkene Hydroamination Reactions Catalyzed by 
[Rh(DPEphos)]+.Chem. Eur. J. 2016, 22, 9311-9320. (b) Couce-Rios, A.; 
Kovács, G.; Ujaque, G.; Lledós, A. Hydroamination of C–C Multiple 
Bonds with Hydrazine Catalyzed by N-Heterocyclic Carbene–Gold(I) 
Complexes: Substrate and Ligand Effects. ACS Catal. 2015, 5, 815-829. 
(c) Kovács, G.; Lledós, A.; Ujaque, G. Hydroamination of Alkynes with 
Ammonia: Unforeseen Role of the Gold(I) Catalyst. Angew. Chem. Int. 

Ed. 2011, 50, 11147-11151. (d) Strom, A. E.; Balcells, D.; Hartwig, J. F. 
Synthetic and Computational Studies on the Rhodium-Catalyzed Hy-
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droamination of Aminoalkenes. ACS Catal. 2016, 6, 5651-5665. (e) 
Tobisch, S. CuH-catalysed hydroamination of arylalkynes with hydroxyl-
amine esters – a computational scrutiny of rival mechanistic pathways. 
Chem. Sci. 2017, 8, 4410-4423. 

(11) Optimization geometries and Gibbs energies are computed in tolu-
ene at M06 level; for Co the SDD pseudopotential along with its associat-
ed basis set, adding f orbitals, and a triple-ς basis set for the rest of atoms 
was employed.6  

(12) Monitoring the reaction of 1a-Co (1 equiv) and 2b (2 equiv) at 
90°C by 1H NMR experiments reveals full disappearance of the methyl 
signals of CH2SiMe3 fragment of 1a-Co in less than 10 minutes. Addition-
ally, no induction period was noticed under catalytic conditions.6 

(13) This dimer is also generated under stoichiometric reaction condi-
tions. 
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