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Abstract—A convenient method for the one-pot synthesis of heterocyclic compounds bearing a perfluoroalkyl group from
a-chlorostyrenes via perfluoroalkylated a,b-unsaturated ketones has been developed. © 2000 Elsevier Science Ltd. All rights
reserved.

Development of an efficient method for the synthesis of
perfluoroalkylated heterocyclic compounds is currently
an important subject, especially in agrochemical and
pharmaceutical fields,1 because the fluoroalkylated het-
erocyclic compounds have high potential as herbicides,
fungicides, drugs and pesticides, etc.2 Among the vari-
ous methods, the building-block strategy is the most
popular and attractive. In our continuous work on
oxygenative perfluoroalkylation of olefins,3,4 we now
report a novel one-pot synthetic route to heterocyclic
compounds bearing a perfluoroalkyl group from a-
chlorostyrene as shown in Scheme 1.

As reported previously, fluoroalkylated ketones were

obtained as a mixture of the unsaturated ketone (Ar-
COCH�CF(CF2)n−1CF3: 1) and the saturated ketone
(ArCOCH2(CF2)nCF3: 2) in the photochemical reaction
of a-chlorostyrene with perfluoroalkyl iodide in the
presence of hexabutylditin under oxygen atmosphere.4

The saturated ketone 2 was produced initially, and then
the elimination of HF gave the unsaturated ketone 1
under basic conditions. The ketone 1 is expected to be
very reactive for various types of nucleophiles.4–6 When
the ketone 1a, thus produced, was treated with
methanol or isopropylamine, the corresponding substi-
tution products (3 and 4) were obtained in high yields
(Scheme 2). The more thermodynamically stable Z
isomer was formed selectively in 3. The structure of 3

Scheme 1.

Scheme 2. Reaction of 1a with nucleophiles.
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was characterized by examination of the spectroscopic
data in comparison with those of E and Z-1a.4 In 4,
one isomer was obtained selectively, and the structure
was assigned to the Z isomer based on the N�H…O
hydrogen bond.

Since an attempted photochemical reaction produced a
mixture of 1 and 2, we planned the synthesis of hetero-
cyclic compounds starting from the mixture of 1 and 2.
By using the new methodology, a variety of pe-
rfluoroalkylated heterocylic compounds hitherto un-
known can be expected to be prepared in very short
steps. When the reaction mixture consisting of 1 and 2
was treated with hydrazine acetate, the fluoroalkylated
pyrazole 5 was obtained (Scheme 3).7 Although the two
tautomers, 5-aryl-3-perfluoroalkyl- and 3-aryl-5-pe-
rfluoroalkylpyrazoles are possible, the NMR spectra
showed one set of signals even at −80°C. The observed
13C NMR chemical shifts were consistent with those of
5-aryl-3-perfluoroalkylpyrazole (5) in the comparison
with those of 3- and 5-phenylpyrazoles and N-
methylpyrazole reported in the literature.8 The length
of the fluoroalkyl chains and the substituents on the
benzene ring (p-Me and p-Cl) had little effect on the
yields of the pyrazoles 5 (Table 1).

Similarly, dihydrodiazepines 6 and pyrimidines 7 were
obtained in moderate yields by the reactions with ethyl-
ene diamine (NH2CH2CH2NH2) and formamidine ace-
tate (NH�CHNH2·AcOH), respectively (Scheme 4,
Table 1).9 In the diazepine, one tautomer (7-aryl-5-per-
fluoroalkyl-2,3-dihydro-1,4-diazepine: 6) was observed;
the structure was determined by the comparison of the
13C NMR spectra with those of 5-trifluoromethy-2,3-
dihydro-1,4-diazepine.10

Interestingly, in the reaction with cyclic hydrazine like
piperidazine, bicyclic iminium salts 8 were obtained
(Scheme 5). As the reaction was carried out in one-pot,
Bu3SnI formed by the iodine abstraction from per-
fluoroalkyl iodide with a stannyl radical in the photo-
chemical reaction, remained in the reaction system, and
the iodine became the counter anion of the salt. The
structures of these compounds were characterized by
examination of the spectroscopic and analytical data.12

Thus, the method is also applicable to secondary
amines to afford the N-alkylated pyrazoles.

Fluoroalkylated isoxazoles were obtained as a mixture
of the regioisomers 9 and 10 by the direct reaction

Scheme 3. Synthesis of 5.

Table 1. One-pot synthesis of 5–7 from a-chlorostyrenes via 1

a) Yields (overall yields based on CF3(CF2)nI) were determined by 19F NMR using PhCF3 as an internal standard.
Isolated yields are shown in parenthesis. b) Known compounds.11

Scheme 4. Synthesis of 6 and 7.
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Scheme 5. Synthesis of 8. Overall yields were determined by 19F NMR. Isolated yields are shown in parenthesis.

Scheme 6. Synthesis of 9 and 10. Isolated yield is shown in parenthesis.

between the photochemical reaction mixture and hy-
droxylamine (Eq. (1), Scheme 6).13 On the other hand,
the ketone 3 was found to give the isoxazole 9 selec-
tively by the reaction with hydroxylamine; the one-pot
procedure for the regioselective synthesis of 9 was
carried out as shown in Eq. (2) of Scheme 6.14 The 1H
NMR chemical shift (dH=7.07) of the isoxazole 9 thus
obtained was consistent with the reported shift,15 and
the C-5 carbon in the isoxazole ring was observed at
d=158.83 as a triplet due to the CCF coupling reflect-
ing the existence of a perfluoroalkyl group on this
carbon.14

In summary, the high potential of the ketone 1 as a
building block for the synthesis of heterocyclic com-
pounds was shown. As a-chlorostyrenes were readily
prepared from styrenes with PhSeCl316 or from ace-
tophenone derivatives with PCl5,17 the method de-
scribed here is very convenient and practical for the
regioselective synthesis of various types of heterocyclic
compounds bearing both perfluoroalkyl and aryl
groups.
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