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Abstract: An efficient synthesis of the C3–C12 aldehyde fragment
of 24-demethylbafilomycin C1 was accomplished for assembling
the 16-membered plecomacrolide skeleton according to a 1,3-di-
ene–ene ring-closing metathesis (RCM) strategy. A boron-mediat-
ed anti-selective aldol condensation of Abiko’s chiral propionate
was used to secure the C6 and C7 stereogenic centers while the C8
chirality was introduced from a chiral building block. The dithiane
alkylation and the methyl ketone Horner–Wittig olefination using
allyldiphenylphosphine oxide were employed for construction of
the requisite (E)-1,3-diene subunit.

Key words: anti-selective aldol, 1,3-diene, dithiane, Horner–Wit-
tig olefination, a,b-unsaturated aldehyde

The plecomacrolides are a family of unique secondary
metabolites possessing a 16- or 18-membered ring macro-
lactone and a folding hemiacetal subunit on the side
chain.1,2 24-Demethylbafilomycin C1 (1, Scheme 1)3a is a
new member of the class B subgroup of the plecomac-
rolides. It is produced together with other related com-
pounds by a commensal microbe Streptomyces sp. CS
associated with Maytenus hookeri.3 24-Demethylbafilo-
mycin C1 was reported to exert strong cytotoxicity at 10–6

to 10–8 M concentrations against P388 and A549 tumor
cell lines by ca. 80% and 90% inhibitions, respectively.
The parent antibiotic, bafilomycin A1, does not have the
fumaric acid monoester moiety attached to the oxygen
atom at C21.4 It is the most investigated class B plecomac-
rolide as the specific vacuolar H+-ATPase (V-ATPase) in-
hibitor.5–8 Since Evans and Calter9a reported the first total
synthesis of bafilomycin A1 in 1993, a number of labora-
tories has dedicated efforts to construct this complex and
highly functionalized target.9–11 In general, the palladium-
catalyzed cross-coupling reactions of vinyl boron or tin
derivatives with vinyl iodides were used for installation of
the 1,3-diene functionality via formation of the C11–C12
bond. We designed a different approach toward assem-
bling the tetraene macrolactone embedded in a 16-mem-
bered ring by employing a 1,3-diene–ene ring-closing
metathesis (RCM).12,13 According to the findings by Yang
and co-workers,14 the 16-membered ring macrolactone

with the tetraene in place could not be directly constructed
via 1,3-diene–ene RCM. Therefore, we focused our effort
on alternative solutions to meet this synthetic challenge.15

We have successfully prepared a model macrolactone
lacking the C6–C8 stereotriad via sequential formation of
the C2–C3 single bond by aldol condensation, the C12–
C13 double bond by 1,3-diene–ene RCM, and finally the
C2–C3 double bond by b-elimination.15a,b We have re-
cently accomplished synthesis of the C13–C25 fragment
2 by a diastereoselective aldol condensation of the ketone
boron enolate as the key step.16 We report here on synthe-

Scheme 1 Retrosynthetic bond disconnections of 24-demethylbafi-
lomycin C1 (1) yielding the C13–C25 side chain 2 and the C3–C12 al-
dehyde fragment 3
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sis of the C3–C12 aldehyde fragment 3 via a highly anti-
selective aldol condensation of a derivative of the keto al-
dehyde 5 with Abiko’s chiral propionate 6.17

The C6–C8 stereotriad18 in the bafilomycin-type pleco-
macrolides has been synthesized in various manners.
Toshima and co-workers9d used the chiral intermediate
obtained from Felkin–Anh-selective Hiyama addition of
crotyl–chromium species to O-protected lactaldehyde19

for installation of the C6/C7 anti stereochemistry. It was
followed by a substrate-controlled hydroboration to se-
cure the C8 stereogenic center. Roush’s total synthesis9f

employed a diastereoselective crotylboration of the chiral
aldehyde derived from methyl (R)-(–)-3-hydroxy-2-meth-
ylpropionate to control the C6–C8 anti/anti stereotriad.
Hanessian’s strategy9g relied on the stereocontrolled cu-
prate additions in a two-directional mode. Marshall’s total
synthesis10b of bafilomycin V1 utilized stereoselective ad-
dition of chiral nonracemic allenylzinc reagent to a chiral
aldehyde for formation of the C7–C8 bond. In addition, an
interesting desymmetrization of a cyclohexanone deriva-
tive was developed for accessing the anti/anti stereotri-
ad.10d According to our synthetic strategy in Scheme 1, the
1,3-diene moiety of 3 could be installed by the Horner–
Wittig olefination of the methyl ketone 5 with allyldi-
phenylphosphine oxide 4.20 The aldehyde functionality in
5 was expected to undergo an anti-selective aldol reaction
with the (E)-boron enolate generated from Abiko’s chiral
propionate 6. Thus, our first task was to search for a suit-
able synthetic equivalent of 5 for easy differentiation of
the two carbonyl groups.

As given in Scheme 2, we prepared the dithiane derivative
8 from the known chiral iodide 7 readily available from
methyl (R)-(–)-3-hydroxy-2-methylpropionate.21 Hydro-
lysis of the dithiane 8 by treating with I2 and NaHCO3 in
aqueous acetone afforded the ketone 11 (91%) which was
subjected to the Horner–Wittig olefination with 420 to
form the 1,3-diene 12 in 78% yield. We tried removal of
the PMB group in 12 with DDQ but the desired alcohol 13
was not obtained due to decomposition under the reaction
conditions. On checking the crude product by 1H NMR
spectroscopy, only 4-methoxybenzaldehyde could be as-
signed along with some unidentified materials. We turned
our attention to the dithiane aldehyde 10 as the masked ke-
tone aldehyde 5. Removal of the PMB group in 8 with
DDQ gave a 95% yield of the alcohol 9. It was followed
by a selective oxidation of the primary alcohol in the pres-
ence of the dithiane moiety. After screening for different
oxidants, we managed to obtain 10 in 60–70% yields from
9 by using stabilized IBX22 (1.1 equiv; added in por-
tions),23 Dess–Martin periodinane (DMP),24 or TPAP–
NMO.25 It is worthy mentioning that IBX was reported to
remove a 1,3-dithinyl group in aqueous DMSO.26

We performed the anti-selective aldol condensation of the
chiral aldehyde 10 with the (E)-boron enolate derived
from 6 to secure the anti/anti stereotriad in 14 (Scheme 3).
The latter was prepared on a 3 gram scale in high diaste-
reoselectivity of 95:527 and in the desired absolute config-
uration as predicted by the chiral auxiliary in 6.17

Influence of the stereogenic center of the aldehyde 10 on
the stereochemical course of the aldol reaction was not
observed. Reduction of 14 with LiAlH4 gave the diol 15 in
76% isolated yield. Protection of 15 as the bis-TBS ether
16 (97%) and subsequent hydrolysis of the dithianyl moi-
ety afforded the methyl ketone 17 in 89% yield from 16.
The Horner–Wittig olefination of 17 with allyldiphen-
ylphosphine oxide 420 furnished the (E)-1,3-diene 18 in
89% yield. It was found that addition of the reagents at 
–90 °C was essential for achieving high diastereoselectiv-
ity for the Horner–Wittig olefination. Selective removal
of the primary TBS ether in 18 by treating with a catalytic
amount of PPTS in MeOH at room temperature gave the
alcohol 19 in 80% yield. DMP oxidation in the presence
of NaHCO3 converted 19 into the corresponding aldehyde
20 (86%)28 whose 1,3-diene moiety remained intact under
the oxidation conditions. The aldehyde 20 was subjected
to the Wittig olefination with the ylide,
Ph3P=C(Me)CO2Et, in toluene at 100 °C for 27 hours to
produce the a,b-unsaturated ester 21 in 85% yield with ex-
clusive E configuration for the newly formed trisubstitut-
ed double bond. Reduction of the ester moiety in 21 by
DIBAL-H afforded the alcohol 22 (97%) which was then
oxidized with DMP to furnish the target C3–C12 aldehyde
fragment 3 in 82% yield.29

In summary, we have developed a concise synthesis of the
C3–C12 fragment 3 of 24-demethylbafilomycin C1 and
the related 16-membered class B plecomacrolides. The
readily available dithiane aldehyde 10 was confirmed to
be an appropriate synthon to the ketone aldehyde 5. The
anti-selective aldol reaction of 10 with the (E)-boron eno-
late derived from Abiko’s chiral propionate 6 afforded the
desired anti/anti stereotriad in high diastereoselectivity
presumably attained via a reagent control process. Finally,
the (E)-1,3-diene functionality was installed at –90 °C by

Scheme 2 Synthesis of the dithiane aldehyde 10 as the masked 5
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the Horner–Wittig olefination of the methyl ketone 17
with allyldiphenylphosphine oxide 4. Therefore, the tar-
get molecule 3 could be prepared from the chiral iodide 7
by a 13-step sequence in an overall yield of 12.3%. More-
over, our findings on selective oxidation of an alcohol
with stabilized IBX, DMP, or TPAP–NMO in the pres-
ence of a dithianyl moiety may be useful for application in
multistep syntheses.

Scheme 3 Synthesis of the C3–C12 aldehyde fragment 3
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chromatographic separation.

(29) Physical and Spectroscopic Data of 3
Colorless oil; [a]D

20 31.9 (c 0.73, CHCl3). 
1H NMR (300 

MHz, CDCl3): d = 9.40 (s, 1 H), 6.72 (dd, J = 9.9, 1.2 Hz, 1 
H), 6.61–6.48 (m, 1 H), 5.81 (d, J = 11.4 Hz, 1 H), 5.09 (dd, 
J = 16.8, 1.8 Hz, 1 H), 4.99 (d, J = 10.2 Hz, 1 H), 3.54 (dd, 
J = 4.5, 3.0 Hz, 1 H), 2.95–2.85 (m, 1 H), 2.19 (d, J = 8.4 Hz, 
1 H), 1.85–1.64 (m, 2 H), 1.76 (s, 3 H), 1.71 (s, 3 H), 1.04 (d, 
J = 7.5 Hz, 3 H), 0.92 (s, 9 H), 0.74 (d, J = 6.3 Hz, 3 H), 0.07 
(s, 3 H), 0.06 (s, 3 H). 13C NMR (75 MHz, CDCl3): d = 
195.6, 157.6, 137.3, 137.2, 133.0, 127.4, 115.0, 79.4, 43.7, 
36.9, 35.9, 26.0 (×3), 18.6, 18.3, 16.3, 15.3, 9.3, –3.9, –4.0. 
HRMS (ESI+): m/z calcd for C21H39O2Si [M + H+]: 
351.2719; found: 351.2729.
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