Tetrahedron Letters 55 (2014) 5268-5270

Contents lists available at ScienceDirect

Tetrahedron Letters

journal homepage: www.elsevier.com/locate/tetlet

One-pot synthesis of tryptanthrin by the Dakin oxidation of indole-3-carbaldehyde

Takumi Abe^a, Tomoki Itoh^a, Tominari Choshi^b, Satoshi Hibino^b, Minoru Ishikura^{a,*}

^a School of Pharmaceutical Sciences, Health Sciences University of Hokkaido, Ishikari-Tobetsu, Hokkaido 061-0293, Japan
^b Faculty of Pharmacy and Pharmaceutical Sciences, Fukuyama University, Fukuyama, Hiroshima 729-0292, Japan

ARTICLE INFO

Available online 1 August 2014

Article history:

Keywords: Oxidative coupling Indole-3-carbaldehyde Indolo[2,1-b]quinazoline Urea hydrogen peroxide Dakin oxidation

Received 25 June 2014

Revised 23 July 2014

Accepted 28 July 2014

ABSTRACT

A one-pot approach to indolo[2,1-*b*]quinazolines from indole-3-carbaldehydes through the Dakin oxidation was developed. It was shown that the reaction proceeded through the condensation of indole-3-carbaldehydes with isatoic anhydrides, derived in situ from indole-3-carbaldehydes by the Dakin oxidation, and further oxidation/cyclization steps.

© 2014 Elsevier Ltd. All rights reserved.

Tryptanthrin (**2a**), first obtained from the sublimation of natural indigo¹ and isolated from the culture of fungus *Candida lipolytica*,² is a member of a unique class of alkaloid characterized by a novel indolo[2,1-*b*]quinazoline core. Several related alkaloids, such as candidine (**3**),^{3,4} phaitanthrins A (**4**),⁴ B (**5**),⁴ and C (**6**),⁴ and cruciferane (**7**),⁵ have also been found in a wide range of natural sources, including plant materials and mammals (Fig. 1). Tryptanthrin (**2a**) and several of its derivatives exhibit antitumor, antimalarial, antiparasitic, and antineoplastic activity, and inhibit COX-2, 5-LOX, and PGE(2) expression.^{6–8}

Because of their diverse biological activities and structural intricacy, these alkaloids have been the target of numerous synthetic studies.^{9,10} The most common synthetic approach to the indolo[2,1-*b*]quinazoline core depends on the use of isatin, through the reaction of isatin with isatoic anhydride,¹¹ thermolysis of isatin,¹² cathodic reduction of isatin,¹³ the reaction of anthranilic acid with isatin in the presence of SOCl₂,¹⁴ and the reaction of isatin with POCl₃.¹⁵ Moreover, the reaction of *o*-lithiophenyl isocyanide with isocyanate,¹⁶ I₂/TBHP-catalyzed intramolecular amination,¹⁷ and the insertion of an aryne intermediate to quinazolone¹⁸ have been developed for the synthesis of tryptanthrin. Recently, the construction of **2a** through oxidative dimerization of isatin or indole has been reported, including oxidation of isatin with KMnO₄,¹⁹ Cu-catalyzed oxidation of indole,²⁰ and oxone-induced oxidation of indole-3-carbaldehyde.²¹

The Dakin oxidation is a widely used method for converting various aryl aldehydes to phenols.²² We recently used this method for a one-pot conversion of a benzaldehyde moiety to the quinone system of calothrixin B.²³ However, the Dakin oxidation of heteroaryl aldehydes has received less attention.²⁴ In this work, we demonstrate the use of the Dakin oxidation of indole-3-carbaldehydes in the one-pot synthesis of tryptanthrin (**2a**).

Initially, aldehyde **1a** was treated with *m*-CPBA and a 30% agueous solution of H_2O_2 ; however, no reaction was observed (Table 1, entries 1–3). Addition of a catalytic amount of (PhSe)₂ (0.2 equiv) markedly accelerated the reaction, producing 2a in 40% yield (entry 4). Furthermore, 30% aqueous H₂O₂ solution was replaced with urea hydrogen peroxide (UHP). Treating 1a with UHP (10 equiv) in CH₂Cl₂ at room temperature resulted in a complex mixture (entry 5), whereas 2a was obtained in 55% yield by heating 1a with UHP (5 equiv) in toluene at 75 °C (entry 8). To our surprise, candidine (3) was obtained as a trimerization product in 21% yield by treating 1a with excess amounts of UHP (10 equiv) in the presence of $(PhSe)_2$ (0.2 equiv) in CH_2Cl_2 at room temperature (entry 9). Candidine (3) has so far been prepared by the condensation of 2a with 3-acetoxyindole in boiling AcOH and piperidine,²⁵ although the one-pot formation of 3 from 1a through oxidative trimerization is, to our knowledge, hitherto unknown. The reaction with aldehydes 1b-1g also produced 2b-2g (entries 10, 11, and 13-15), except the reaction of 1d (entry 12). No products were

^{*} Corresponding author. Tel./fax: +81 133 23 1245. E-mail address: ishikura@hoku-iryo-u.ac.jp (M. Ishikura).

Figure 1. Tryptanthrin (2a) and related alkaloids.

observed in reactions with **1h** and **1i**, which contained a substituent at the 7-position (entries 16 and 17).

Scheme 1 illustrates a plausible reaction path. The Dakin oxidation of **1a** first produces formate **8**, followed by oxidation to isatoic anhydride **10a** via isatin **9**. Then, **10a** reacts with **1a** to form amide **11**, which is converted to **2a** through oxidation of **11** to **12** followed

Table 1

Dakin oxidation of indole-3-carbaldehydes 1

Entry	1	Conditions	Yield ^a (%)
1	1a	<i>m</i> -CPBA (3 equiv), CH ₂ Cl ₂ , 0 °C, 3 h	N.R.
2	1a	30% aq. H ₂ O ₂ (excess), CH ₂ Cl ₂ , rt, 3 h	N.R.
3	1a	30% aq. H ₂ O ₂ (excess), TFA (0.2 equiv), CH ₂ Cl ₂ , rt, 3 h	N.R.
4	1a	30% aq. H ₂ O ₂ (excess), (PhSe) ₂ (0.2 equiv), CH ₂ Cl ₂ , rt,	40 (2a)
		3 h	
5	1a	UHP(10 equiv), CH ₂ Cl ₂ , rt, 16 h	b
6	1a	UHP (5 equiv), neat, 85 °C, 1 h	25 (2a)
7	1a	UHP (5 equiv), toluene, rt, 16 h	N.R.
8	1a	UHP (5 equiv), toluene, 75 °C, 16 h	55 (2a)
9	1a	UHP (10 equiv), (PhSe) ₂ (0.2 equiv), toluene, 75 °C,	21 (3)
		16 h	
10	1b	UHP (5 equiv), toluene, 75 °C, 16 h	40 (2b)
11	1c	UHP (5 equiv), toluene, 75 °C, 16 h	48 (2c)
12	1d	UHP (5 equiv), toluene, 75 °C, 16 h	b
13	1e	UHP (5 equiv), toluene, 75 °C, 16 h	62 (2e)
14	1f	UHP (5 equiv), toluene, 75 °C, 16 h	70 (2f)
15	1g	UHP (5 equiv), toluene, 75 °C, 16 h	43 (2g)
16	1h	UHP (5 equiv), toluene, 75 °C, 16 h	b
17	1i	UHP (5 equiv), toluene, 75 °C, 16 h	b

^a Isolated yields.

^b Complex mixture.

Scheme 1. A plausible reaction path.

by intramolecular cyclization. The formation of **3** apparently resulted from the condensation of **2a** with **8**. However, **3** was not obtained as a product of the reaction of **2a** with **8** in the presence of UHP and (PhSe)₂ in CH₂Cl₂. Therefore, the details of the formation of **3** are being investigated.

To support the proposed mechanism, the following experiments were carried out (Scheme 2). When the oxidation of **1a** with UHP was stopped after 1 h, compounds **1a**, **8**, **10a**, and **11** were isolated from the reaction mixture. The oxidation of **8** produced a trace amount of **2a**, and no isolable products were obtained from the reaction of **9** with **10a**. In contrast, **2a** was obtained in 80% yield from the oxidation of **1a** with **10a**. Furthermore, the oxidation of **11**, through the N-acylation of **1a** with **10a** in the presence of Et₃N, afforded **2a** in 70% yield. However, the attempted oxidation of **1h** with **10a** in the presence of Et₃N did not give the corresponding amide **11**. This may be caused by the presence of the Br group at the 7-position of **1h**, which hindered the N-acylation with **10a**.

To our knowledge, the one-pot formation of **2a** through oxidation of **1a** with **10a** is unprecedented, although it is well-known that heating **9** with **10a** in the presence of Et_3N in toluene gives **2a**.²⁶ Compounds **2** are hybrids of **1** and **10**, and substituted alde-

Scheme 2. Experiments to confirm the proposed path.

Table 2

Ох	idative cou	ipling c	of 1 w	vith	10
			R	$\left\rangle$	Т

Entry	R of 1	X of 10	Yield ^a (%)
1	4-Br (1b)	H (10a)	76 (2j)
2	4-Br (1b)	Br (10b)	71 (2k)
3	4-OBn (1k)	H (10a)	75 (2I)
4	5-Br (1c)	H (10a)	80 (2m)
5	5-Br (1c)	Br (10b)	71 (2c)
6	5-Me (1f)	H (10a)	85 (2n)
7	5-Me (1f)	Br (10b)	70 (2o)
8	6-Br (1g)	H (10a)	70 (2p)
9	6-Br (1g)	Br (10b)	65 (2q)
10	7-Br (1h)	H (10a)	Complex mixture
11	7-Br (1h)	Br (10b)	Complex mixture

^a Isolated yields.

Scheme 3. Preparation of alkaloids 4, 5, 6, and 7 from 2a.

hydes 1 are accessible more easily than substituted isatins. Therefore, the scope of the one-pot oxidation of **1** with **10** was further examined (Table 2). Heating 1 and 10 (1.5 equiv) with UHP in toluene at 75 °C provided tryptanthrin derivatives 2 in good yields (entries 1-9). However, no products were again obtained from the reaction of 1h (entries 10 and 11).

Next, the conversion of **2a** to (±)-phaitanthrins A (**4**), B (**5**), and C (6), and (\pm) -cruciferane (7) was carried out (Scheme 3).^{18,27,28} Removal of the benzyl group of **2l** with MgBr₂OEt₂ in boiling benzene provided phaitanthrin C (6) in 72% yield. Stirring 2a in acetone and DMF in the presence of molecular sieves 4A at room temperature produced (±)-phaitanthrin A (4) in 80% yield. The Reformatsky reaction of 2a with methyl bromoacetate using Zn and TMSCl was successfully performed to give (±)-phaitanthrin B (5) in 90% yield. The reductive cyclization of 5 with NaBH₄ in MeOH/THF afforded (±)-cruciferane (7) in 88% yield.

In summary, we have demonstrated that the Dakin oxidation of indole-3-carbaldehyde (1a) with urea hydrogen peroxide (UHP) produced tryptanthrin (2a). The reaction proceeded through the in situ generation of amide **11** from the condensation of **1a** with isatoic anhydride 10a, followed by oxidative intramolecular cyclization. Moreover, the unprecedented one-pot formation of candidine (3) via trimerization in the presence of UHP (10 equiv) and a catalytic amount of $(PhSe)_2$ (0.2 equiv) was also observed. The Dakin oxidation of 1 and 10 was also developed for synthesizing several derivatives of **2a**. Further studies for exploring the scope of the reaction are now in progress.

Acknowledgement

This work was supported in part by the Ministry of Education, Culture, Sports, Sciences, and Technology of Japan through a Grant-in Aid for Scientific Research (No. 26460012).

References and notes

- von Sommaruga, E. Justus Libigs Ann. Chem. 1879, 195, 302-313. 1.
- Schindler, W.; Zähner, H. Arch. Mikrobiol. 1971, 79, 187-203. 2.
- 3. Bergman, J. Phytochemistry 1989, 28, 3547.
- Jao, C. W.; Lin, W. C.; Wu, Y. T.; Wu, P. L. J. Nat. Prod. 2008, 71, 1275-1279. 4.
- Chen, M.; Gan, L.; Lin, S.; Wang, X.; Li, L.; Li, Y.; Zhu, C.; Wang, Y.; Jiang, B.; Jiang, 5. ; Yang, Y.; Shi, J. J. Nat. Prod. 2012, 75, 1167–1176.
- 6. Krivogorsky, B.; Nelson, A. C.; Douglas, K. A.; Grundt, P. Bioorg. Med. Chem. Lett. 2013, 23, 1032-1035.
- 7 Liao, X.; Leung, K. N. Chem.-Biol. Interact. 2013, 203, 512-521.
- Hwang, J. M.; Oh, T.; Kaneko, T.; Upton, A. M.; Franzblau, S. G.; Ma, Z.; Cho, S. N.; 8. Kim, P. J. Nat. Prod. 2013, 76, 354-367.
- 9 Tucker, A. M.; Grundt, P. ARKIVOC 2012, 546-569.
- Jahng, Y. Arch. Pharm. Res. 2013, 36, 517-535. 10.
- Kumar, A.; Tripathi, V. D.; Kumar, P. Green Chem. 2011, 13, 51–54. 11.
- Karpf, H.; Junek, H. Tetrahedron Lett. 1978, 19, 3007-3008. 12.
- 13. Batanero, B.; Barba, F. Tetrahedron Lett. 2006, 47, 8201-8203.
- Jahng, K. C.; Kim, S. I.; Kim, D. H.; Seo, C. S.; Son, J. K.; Lee, S. H.; Lee, E. S.; Jahng, 14. Chem. Pharm. Bull. 2008, 56, 607-609.
- Moskovkina, T. M.; Kalinnovskii, A. I.; Makhan'kov, V. V. Russ. J. Org. Chem. 15. 2012, 48, 123-126.
- Lygin, A. V.; de Meijere, A. Org. Lett. 2009, 11, 389-392. 16.
- Cai, Z. J.; Wang, S. Y.; Ji, S. J. Org. Lett. 2013, 15, 5226-5229. 17.
- Vaidya, S. D.; Argade, N. P. Org. Lett. 2013, 15, 4006-4009. 18.
- 19. Moskovkina, T. V.; Denisenko, M. V.; Kalinovskii, A. I.; Stonik, V. A. Russ. J. Org. Chem. 2013, 49, 1740-1743.
- 20. Wang, C.; Zhang, L.; Ren, A.; Lu, P.; Wang, Y. Org. Lett. 2013, 15, 2982-2985.
- Nelson, A. C.; Kalinowski, E. S.; Jacobson, T. L.; Grundt, P. Tetrahedron Lett. 2013, 21.
- 54 6804-6806 22.
- Stewart, J. D. Curr. Org. Chem. 1998, 2, 195-216.
- Abe, T.; Ikeda, T.; Yanada, R.; Ishikura, M. Org. Lett. 2011, 13, 3356-3359. 23.
- Alamgir, M.; Mitchell, P. S. R.; Bowyer, P. K.; Kumar, N.; Black, D. S. Tetrahedron 24. 2008, 64, 7136-7142.
- 25 Bergmann, J.; Tilstam, U. Tetrahedron 1985, 41, 2883-2884.
- Sharma, V. M.; Prasanna, P.; Seshu, K. V. A.; Renuka, B.; Rao, C. V. L.; Kumar, G. 26. S.; Narasimhulu, C. P.; Babu, P. A.; Puranik, R. C.; Subramanyam, D.; Venkateswarlu, A.; Rajagopal, S.; Kumar, K. B. S.; Rao, C. S.; Mamidi, N. V. S. R.; Deevi, D. S.; Ajaykumar, R.; Rajagopalan, R. Bioorg. Med. Chem. Lett. 2002, 12, 2303-2307.
- 27. Kang, G.; Luo, Z.; Liu, C.; Gao, H.; Wu, Q.; Wu, H.; Jiang, J. Org. Lett. 2013, 15, 4738-4741.
- 28. Gahtory, D.; Chouhan, M.; Sharma, R.; Nair, V. A. Org. Lett. 2013, 15, 3942-3945.