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The effects on the redox properties of modifying the molecular skeleton of neutral bis-2-(4-dimethylamino)pyridinylidene electron
donors, derived from 4-dimethylaminopyridine (4-DMAP), have been explored, by varying two parameters: (i) the length of a poly-
methylene chain linking the two pyridine-derived rings and (ii) the nature of the nitrogen substituents on the 4 and 4’ positions of

the precursor pyridines. Restricting the bridge length to two methylene units significantly altered the redox profile, while changes in

the nitrogen-substituents at the 4 and 4’ positions led to only slight changes in the redox potentials.

Introduction

Neutral organic compounds 1 and 4-10 (Figure 1) have
attracted considerable attention as ground-state electron donors
[1-38], and many are now being employed as reagents in
organic transformations. Such a range of reagents with different
redox potentials leads to the expectation of considerable
selectivity in their reductions of organic substrates, and evi-

dence is steadily accumulating to support this. Tetrathiaful-

valene (TTF, 1, E'}, = 0.37 V; E2}, = 0.67 V in DCM vs SCE)
[1], one of the weakest of these donors, reduces arene-
diazonium salts to aryl radicals [2-12], but is not strong enough
to react with alkyl and aryl halides. The driving force for its
oxidation is the attainment of some degree of aromaticity in the
formation of its radical cation salt 2 on the loss of one electron,

and full aromaticity in its dication salt 3 on loss of two elec-
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Figure 1: Neutral organic electron donors 1 and 4-10.

trons, as well as the stabilization of both the positive charge and
radicals by the lone pairs on the sulfur atoms. The effect of
aromatic stabilization is enhanced in the extended analogue 4;
however, unlike TTF, this compound affords only an irrevers-
= —0.14 V in MeCN (assuming that the
reported value is measured relative to SHE, that would corres-
pond to —0.38 V vs SCE) [13]. Tetrakis-dimethylaminoethene
(TDAE, 5: E'{, =—0.78 V; E2|/, =—0.61 V vs SCE in MeCN)
is a stronger reducing agent and converts electron-deficient

ible oxidation Ej

alkyl bromides to the corresponding anions [14-17] and notably
the iodide CF3-I to trifluoromethyl anion, “CF3, [15] but is not
powerful enough to react with aryl halides. Despite not experi-
encing any aromatic stabilization on oxidation, the molecule is
such a good donor as a result of the ability of the nitrogen atoms
in 5 to stabilize both the positive charge and an unpaired elec-
tron upon oxidation; this stabilization is greater than is afforded
by sulfur in TTF.

Benzimidazole-derived donor 6 (E!j; = —0.82 V; E21/2 =
—0.76 V vs SCE in DMF) [18-20], combines the stabilization of
positive charge and of an unpaired electron provided by four
nitrogens, with aromatic stabilization in its oxidised forms. This
exceptional donor has the power to reduce aryl iodides (E0 =
—2.2 V) to aryl radicals, but not to aryl anions [21]. This is para-
doxical in view of the standard potential of the second step; £°
=0.05 V vs SCE in MeCN for the conversion of an aryl radical

to an aryl anion [39]. Whatever about the standard potentials, in
practice, the formation of aryl anions is only observed when the
electron donor has E1, =—1 V or is more negative [40]. In line
with this, both the imidazole-derived donor 7 (£}, =—1.20 V vs
SCE in DMF) [22-25] and the 4-dimethylaminopyridine
(4-DMAP)-derived donor 8 [E/; (DMF) = —1.69 V vs Fc/Fc']
[26-29], which would equate to —1.24 V vs SCE [F
(DMF)E¢/pe+ = 0.45 V vs SCE] [41] react with aryl iodides to
afford aryl anions. As an indication of their enhanced donor
properties, these two donors can also cleave appropriate arenes-
ulfonamides [25], aryl alkyl sulfones [25,26], Weinreb amides
[28] and acyloin derivatives [29]. They are also prone to
transfer two electrons rather than one, with the cyclic voltam-
mogram (c.v.) of 8 showing a single 2-electron reversible redox
wave [26] while in donor 7 the potentials of the successive elec-
tron transfers are close enough that the c.v. gives the appear-
ance of a single reversible peak, but has a slight shoulder [24].
Molecules 9 (£, =—1.00 V vs SCE in DMF) [30-32] and 10
[33,35,37] extend the range of designs of neutral organic elec-
tron donors, although we are not aware of them being investi-

gated as yet for the reduction of organic substrates.

In order to design both more potent electron donors, and donors
with calibrated and targeted properties, the factors that drive the
electron transfer(s) need to be clearly understood, and this paper

now probes two factors that could impact on that.

Page 2 of 8
(page number not for citation purposes)



Results and Discussion

Donor 8 has a number of attractive features. It is simply
prepared from the reaction of 4-DMAP with 1,3-diiodopropane,
followed by treatment of the product with base [26-28]. A wide
range of analogues of 4-DMAP, which have been well studied
in acylation chemistry [42,43], is already available. This
suggests that preparation of analogues of 8 should also be
straightforward. Hence, donor 8 was selected as the target for
modification. The effect of modifying the length of a poly-
methylene chain linking the two pyridine-derived rings and the
nature of the substituents on the 4- and 4'-positions of those
pyridine rings were the points of particular interest. TDAE, 5,
has been used extensively as a two-electron transfer reagent,
and many salts that feature its dication have been analysed by
X-ray crystallography [44]. In these dications, the two ends of
the molecule are twisted extensively to minimize interaction
between the two positive charges. It is tempting to think that the
degree of twist is linked to the power of the reducing agent. If
twisting was not possible, then the driving force for removal of
the second electron, for the conversion of the radical cation to
the dication, should be diminished. To see if the same twist
occurs with our donor 8, the crystal structure of the disalt 17
was determined [twist (N-C—C-N = 52.5(3) degrees]
(Figure 2). The degree of twist is limited by the three-carbon
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chain — a longer chain should afford greater flexibility and
might afford a stronger donor, mirroring the findings of Ames
et al. with a different series of compounds [18-20,22]. In
contrast, shortening the polymethylene chain as in 14 should
constrain rotation of the pyridine rings in the dication 16, and
hence make formation of 16 more difficult. To determine the
effect of bridge-length on redox potential, the analogous donors
14 and 15 were prepared in situ and converted to their
respective oxidized salts 16 and 18, as shown in Figure 2, by
reaction with iodine. Anion exchange to afford the corres-
ponding hexafluorophosphate salts 16" and 18’ was then carried
out prior to cyclic voltammetry. (The iodide anions were
exchanged since iodide ions would be electrochemically active,

albeit at more positive potentials than feature in our studies.)

Cyclic voltammetry studies were carried out by adding deoxy-
genated solutions of the oxidized disalts 16’18’ (rather than the
electron donors) to the electrochemical cell and then carrying
out the electrochemistry under an inert gas. The donors them-
selves are highly sensitive to traces of oxygen, and so are less
convenient to weigh out than the disalts. All of the cyclic
voltammograms showed reversible redox chemistry, featuring
the transfer of two electrons, as indicated by calibration with
ferrocene/ferrocenium (Fc/Fc™).

X-ray structure of 17

18',n =2,Y =PFg 76% over 3 steps

Figure 2: Formation of donors and oxidation to form diiodide salts, together with the ORTEP diagram of diiodide salt 17 (only the cation is shown).
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Figure 3: Cyclic voltammograms vs Fc/Fc* of 17' < 8 (red) and 16’ <
14 (blue).

Restricting the bridge length to two carbons made donor 14 a
less effective reducing agent (Figure 3) compared to 8, under-
lining the importance of flexibility of the inter-ring bond. Here,
donor 8 shows a single two-electron wave [E!};, (DMF) =
—1.24 V vs SCE (calibrated using Fc/Fc™)], while donor 14
shows two one-electron waves [E! 12 (DMF) =-1.21 V, and
E2,» (DMF) =-0.98 V vs SCE (calibrated using Fc/Fc*)]. The
potential for loss of the first electron is similar in both com-
pounds; however, the loss of the second electron from 8 is about
300 mV more negative than from 14. This indicates a greater
driving force for loss of the second electron in 8 than in 14,
consistent with the predicted difficulty in forming 14 as an
essentially planar dication, where repulsion between the two

charges would be more severe.

In contrast, comparison of the cyclic voltammograms of 18’ and
17’ (Figure 4a) showed only minor differences, with both
showing a single wave corresponding to a two-electron revers-
ible process at essentially the same potential (within 10 mV), so
the increased flexibility does not benefit the two-electron donor

Current [uA]
46
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15 relative to 8. Taking the idea of flexible rotation between the
two halves of the molecule to its limit, we prepared compound
20’ [27] (Figure 5) and determined its cyclic voltammetric
behaviour. As shown in Figure 4b, this [E}, (DMF) =-1.27V
vs SCE (calibrated using Fc/Fc¥)] shows little difference from
that of 17'. [E(» (DMF) =—1.24 V vs SCE (calibrated using Fc/
Fc™)]. Accordingly, permitting a freer rotation than seen in 17’
by extending the tether between the two pyridine-derived rings

does not lead to enhanced donor properties.

The other site of relatively easy variation in 8 was the dialkyl-
amino group. 4-Pyrrolidinopyridine and 4-guanidinopyridine
are significantly better catalysts [42,43] in acylation reactions
than 4-DMAP. Their effectiveness depends on the delocaliza-
tion of the electron pair on the 4-substituent into the pyridine
ring. Accordingly, the disalts 21 and 22 were prepared from
these 4-substituted pyridines [43,45] and converted into their
hexafluorophosphates 21’ and 22’, and then examined by cyclic
voltammetry. Each showed a reversible two-electron redox
wave (Figure 6). Redox equilibria related to 21 showed that the
corresponding donor 23 was a stronger donor than donor 8 by
about 90 mV for the transfer of its first electron, while the
second electron occurs at the same potential as seen for donor 8,
while 24 transferred both of its electrons at the same potential
and was within 10mV of 17’.

The reactivity of these two donors was also investigated with
substrate 27. Here, 23 and 24 were prepared in situ from 25’ and
26. This afforded the reductive de-iodination product 28 in good
yield (84% when using 25’, and 68% when using 26).

These results are in accord with the previous reactions of donor
8, and show that significantly more powerful donors than 8
cannot be attained simply by altering the tether length between
the two pyridine units. Similarly, simple modifications to the
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Figure 4: (a) Cyclic voltammograms vs. Fc/Fc* of 17’ < 8 (red) and 18’ < 15 (blue) and (b) of 17’ < 8 (red) and 20’ < 19 (blue).
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Figure 5: Electron donors, their oxidized dications and their reactions with 27.
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Figure 6: Cyclic voltammograms vs Fc/Fc* (a) of 17" <> 8 (red) and 21’ <> 23 (blue) and (b) of 17° <> 8 (red) and 22’ «> 24 (blue) (at half the concn
used for 17°).

4'-substituent do not lead to very large changes in the redox lated below in Table 1.] These outcomes are already helping our

properties of 8. [The oxidation potentials of these new donors  design of new, versatile and more powerful organic electron

and the preceding examples mentioned in this paper are tabu-  donors.

Page 5 of 8
(page number not for citation purposes)



Table 1: Oxidation potentials of organic electron donors?

Electron Donor

1b

4¢

50

10

14

15

19

Elp

0.37V

-0.38 V(irr)

-0.78 V

-0.82V

-1.20 Ve

-1.24 Ve

-1.00 Vvd

-0.32 Ve

-1.21V

-1.23 V¢

-1.27 V¢

E2y,

0.67V

-0.61V

-0.76 V

-0.98V
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Table 1: Oxidation potentials of organic electron donors? (continued)

23 -1.33V -1.24V

24 -1.24 Ve

Beilstein J. Org. Chem. 2010, 6, No. 73.
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Me Me

2All numbers have been converted for comparison with SCE; all experiments recorded in DMF, except where otherwise stated.

PRecorded in DCM.
®Recorded in MeCN.
dRecorded in THF.
eTwo-electron wave.
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