

 Tetrahedron: Asymmetry, Vol. 8, No. 20, pp. 3497–3501, 1997

 © 1997 Elsevier Science Ltd. All rights reserved.

 Printed in Great Britain

 PHI: S0957-4166(97)00433-3

Remote control of Diels–Alder additions. Enantioselective synthesis of (2*R*)-1,2,3,4-tetrahydro-2-hydroxy-5,8-dimethoxynaphthalen-2-yl methyl ketone (Wong's anthracycline intermediate) from furfural

Viviane Theurillat-Moritz, Antonio Guidi[†] and Pierre Vogel^{*}

Section de chimie de l'Université de Lausanne, BCH, CH-1015 Lausanne-Dorigny, Switzerland

Abstract: The enantiomerically pure (1S,4R,4'S,5'S)-1-(4',5'-dimethyl-dioxolan-2'yl)-5,6-dimethylidene-7-oxabicyclo[2.2.1]hept-2-ene derived from the acetal of furfuraland <math>(2S,3S)-butane-2,3-diol underwent addition to 1-acetylvinyl *para*-nitrobenzoate in the presence of an excess of *t*-BuMe₂SiOSO₂CF₃ to yield an 83:17 mixture of two diastereomeric products which was converted into (2R)-1,2,3,4-tetrahydro-2-hydroxy-5,8dimethoxynaphthalen-2-yl methyl ketone. © 1997 Elsevier Science Ltd

Introduction

The Diels-Alder cycloadditions of diene 1 and tetraene 2 have been shown to be regioselective when using methyl vinyl ketone or 2-butynone as dienophiles. The regioselectivity is at its highest when the reactions are carried out at low temperature in the presence of a large excess of a strong Lewis acid.^{1,2} Regio- and stereo-control by the 1-(dimethoxymethyl) group are quite good with 1-acetylvinyl esters 3. For instance, the BF₃·Et₂O-promoted Diels-Alder addition of 1-acetylvinyl RADO(Et)-ate (3a; RADO(Et)=(1R,7R)-3-ethyl-2-oxo-6,8-dioxa-3-azabicyclo[3.2.1]octane-7-exo-carbonyl)³ to tetraene 2 leads to an 87:13 mixture of the monoadducts 4 and 4'. Adduct 4 was converted into (-)-4-demethoxy-7-deoxydaunomycinone and led to a new class of enantiomerically pure anthracycline analogues.⁴

Recently we described the synthesis of enantiomerically pure triene (+)-5, derived from the acetal of furfural and (2S,3S)-butane-2,3-diol in four steps.⁵ We report here the results of our studies on its cycloaddition to 1-acetylvinyl 4-nitrobenzoate **3b** and the conversion of the adducts obtained into Wong's intermediate,^{6,7} of use to generate anthracycline anti-tumor drugs.^{8,9}

* Corresponding author.

[†] Present address: A. Menarini, Via Sette Santi 8, I-50131 Firenze, Italy.

V. THEURILLAT-MORITZ et al.

Results and discussion

As expected¹⁰, triene (+)-5 was much less reactive than diene 1 and tetraene 2 towards all kinds of dienophiles. With **3b**,¹¹ Lewis acids such as $B(OMe)_3$, $BF_3 \cdot Et_2O$, $Yb(OTf)_3$ were not capable of promoting the Diels–Alder cycloaddition without extensive polymerization. We eventually found that *t*-BuMe₂SiOSO₂CF₃ (4 equivalents) was capable of inducing a smooth addition (CH₂Cl₂, -78°C, 7 days) providing aldehyde (+)-6 (70%) after work-up with aqueous NaHCO₃. Bayer–Villiger oxidation of (+)-6 with *meta*-chloroperbenzoic acid (*m*-CPBA) in CH₂Cl₂ (0°C) led to tetraline (-)-7 (80%) with an e.e.=66%, as measured by ¹⁹F-NMR of its Mosher's ester.¹² Its absolute configuration (2*R*) was established as follows (Scheme 1): methylation of (-)-7 with K₂CO₃, Me₂SO₄ in THF (65°C, 2 days, Ar) followed by methanolysis (MeOH, 65°C, 2 h) furnished the known Wong's intermediate (-)-8 (62%).⁷

 $3b + (+)-5 \qquad \frac{1. t-BuMe_2OSO_2CF_3, -78^{\circ}C}{2. NaHCO_3/H_2O, 20^{\circ}C} \qquad 7 \qquad 0H \qquad 0 \\ f = 1 \\ f =$

The enantiomeric excess of 66% obtained for (-)-8 does not arise from epimerization which has been reported to occur under acidic conditions.¹³ When the cycloaddition between 3b and (+)-5 was carried out in a NMR tube (CD₂Cl₂, -78°C), the slow formation of two diastereomeric cyclohexadienyl cations 10 and 10' was observed indicating that the Lewis-acid (*t*-BuMe₂SiOSO₂CF₃) used to promote the Diels–Alder addition induces a fast oxa-ring opening of the 7-oxanorbornadiene intermediates 9. Structures of cations 10 and 10' were given by their ¹³C-NMR characteristics (see Experimental part) which compared well with those reported for the 1,3,5-trimethylcyclohexadienyl cation in super-acid media.¹⁴ On warming the solution to 0°C, cations 10 and 10' eliminated a proton providing a 83:17 mixture of silyl phenolates 11 and 11' (as given by their ¹³C-NMR data). At 20°C, and in the presence of H₂O, 11 and 11' were rapidly hydrolyzed to (+)-6 (Scheme 2).

These observations demonstrate that the incomplete enantiomeric purity of (+)-6, (-)-7 and (-)-8 arises from an incomplete stereoselectivity of the Diels-Alder addition of **3b** to triene (+)-5. As in the case of the cycloaddition of **3b** to tetraene **2**, the cycloaddition 3b+(+)-5 is highly regioselective but the face and/or Alder vs anti-Alder stereoselectivity of the reaction is incomplete, in contrast with the cycloaddition $2+3a \rightarrow 4+4'$.⁴

Conclusion

The enantiomerically enriched (e.e. 66%) Wong's intermediate for anthracycline synthesis has been derived in seven steps from the acetal of furfural and (2S,3S)-butane-2,3-diol. Our approach features a highly regioselective but incompletely stereoselective Diels-Alder addition of 1-acetylvinyl *para*-nitrobenzoate to (1S,4R,4'S,5'S)-1-(4',5'-dimethyldioxolan-2'-yl)-5,6-dimethyldiene-7-oxabicyclo[2.2.1]hept-2-ene.

3498

Experimental

General, see Ferritto and Vogel.¹⁵ None of the procedures were optimized. All solvents were distilled prior to use. CH_2Cl_2 was distilled from P_2O_5 . TLC monitoring: Merck silica gel 60 F_{254} plates, detection by UV light or phosphomolybdic acid and heat. Flash chromatography (FC): Merck silica gel 60 (63–200 μ m).

(2R)-Acetyl-5-formyl-1,2,3,4-tetrahydro-8-hydroxynaphthalen-2-yl para-nitrobenzoate (+)-6

1-Acetylvinyl p-nitrobenzoate¹¹ (50 mg, 0.247 mmol) was dissolved in anh. CH₂Cl₂ (1 ml) and was cooled to -78° C under an Ar atmosphere. t-BuMe₂SiOSO₂CF₃ (90 µl, 0.392 mmol) was added and the solution was stirred at -78° C for 1 h. Triene (+)-5⁵ (20 mg, 0.908 mmol) was then added and the mixture was allowed to react at -78° C without stirring for 1 week. The solution was then poured into sat. aq. NaHCO₃ sol. (3 ml) and ice (4 g) and was stirred for 1 h. The mixture was then extracted with CH₂Cl₂ (10 ml, twice). The organic phases were washed with water (5 ml), sat. aq. NaCl sol. (5 ml), dried (MgSO₄) and the solvent was evaporated without heating. The residue was purified by FC (Florisil, light petroleum/EtOAc 2:1) yielding 25 mg (70%), (colourless oil); e.e.=66% as determined for (-)-7. $[\alpha]_{589}^{25}=310$, $[\alpha]_{578}^{25}=346$, $[\alpha]_{546}^{25}=381$, $[\alpha]_{436}^{25}=890$ (c=0.42, CHCl₃). UV (CH₃CN): 268 (11000); 227 (6000). IR (KBr): 3420, 1723, 1674, 1580, 1527, 1351, 1293, 1231, 1104, 721. ¹H-NMR (250 MHz, CDCl₃): 10.02 (s, CHO); 8.27 (d, ³J=8.8, PNB); 8.12 (d, ³J=8.8, PNB); 7.62 $(d, {}^{3}J=8.3, H-C(6)); 6.83 (d, {}^{3}J=8.3, H-C(7)); 3.57 (ddd, {}^{2}J=18.5, {}^{3}J=5.5, 4.2, H-C(4)); 3.32 (br.$ s., $H_2-C(1)$; 3.25 (ddd, ²J=18.5, ³J=11.3, 5.5, H-C(4)); 2.62 (ddd, ²J=14.0, ³J=5.5, 4.2, H-C(3)); 2.30 (s, Me); 2.11 (ddd, ²J=14.0, ³J=11.3, 5.5, H–C(3)). ¹³C-NMR (100.6 MHz, CDCl₃): 205.6 (s, CO); 192.1 (d, ¹J(C,H)=172, CHO); 163.9 (s, COO); 159.3, 150.8, 139.4 (3s, C(arom)); 135.1, 130.9, 123.6 (3d, ¹J(C,H)=169, 171, C(arom)); 121.1 (s, C(arom)); 112.5 (d, ¹J(C,H)=161, C(arom)); 84.4 (s, C(2)); 29.4, 27.5, 22.9 (3t, ¹J(C,H)=129, 131, 130, C(1), C(3), C(4)); 24.0 (q, ¹J(C,H)=128, Me). CI-MS (NH₃): 402 (0.5, $[M+NH_4]^+$), 337 (0.5, $[M-NO_2]^+$), 260 (21, $[M-C_6H_5NO_2]^+$), 217 (2, [*M*-CO₂C₆H₄NO₂]⁺), 179 (14), 178 (42), 169 (44), 167 (52), 139 (41), 111 (48), 86 (63), 84 (100), 83 (39), 72 (49). Anal. calc. for C₂₀H₁₇NO₇ (383.1): C 62.66, H 4.47, N 3.65; found: C 62.59, H 4.62, N 3.67.

(2R)-2-Acetyl-5-formyloxy-1,2,3,4-tetrahydro-8-hydroxynaphthalen-2-yl para-nitrobenzoate ((-)-7)

A mixture of (+)-6 (70 mg, 0.204 mmol), NaHCO₃ (35 mg, 0.408 mmol) and anh. CH₂Cl₂ (7 ml) was cooled to 0°C. *m*-CPBA (100%, 44 mg, 0.2548 mmol) was added and the solution was stirred at 0°C for 3 h. The mixture was poured into water and ice (10 ml) and extracted with CH₂Cl₂ (20 ml, 3 times). After drying (MgSO₄), the solvent was evaporated and the residue was purified by FC

(silica gel, CH₂Cl₂/light petroleum/EtOAc 8:1:1), yielding 66 mg (80%), yellowish powder (e.e.=66%, Mosher's ester, ¹⁹F-NMR). [α]₅₈₉²⁵=-18.5, [α]₅₇₇²⁵=-19.5, [α]₅₄₆²⁵=-23.0, [α]₄₃₅²⁵=-33.4(*c*=1.1, CHCl₃). IR (KBr): 3434, 2937, 1723, 1528, 1465, 1351, 1321, 1293, 1244, 1117, 1103, 737, 720. ¹H-NMR (400 MHz, CDCl₃): 8.28 (*s*, HCOO); 8.26 (*md*, ³J=8.7, H(arom)); 8.09 (*md*, ³J=8.7, H(arom)); 6.87, 6.67 (2*d*, ³J=8.6, H–C(6), H–C(7)); 3.37 (*br. d*, ²J=18.2, H–C(1)); 3.18 (*br. d*, ²J=18.2, H–C(1)); 2.85 (*br. ddd*, ²J=17.7, ³J=5.9, 2.7, H–C(3)); 2.68 (*br. m*, H–C(3)); 2.59 (*br. m*, H–C(4)); 2.31 (*s*, CH₃); 2.10 (*m*; H–C(4)). ¹³C-NMR (100.6 MHz, CDCl₃): 205.7 (*s*, CO); 164.1 (*s*, COO); 159.6 (*d*, ¹J(C,H)=231, HCOO); 152.0, 150.8, 140.9, 134.5 (4*s*, C(arom)); 131.0 (*d*, ¹J(C,H)=170, C(arom)); 128.1 (*s*, C(arom)); 123.7 (*d*, ¹J(C,H)=172, C(arom)); 121.0 (*s*, C(arom)); 119.6, 112.9 (2*d*, ¹J(C,H)=164, 162, C(arom)); 84.6 (*s*, C(2)); 29.7, 26.8 (2*t*, ¹J(C,H)=130, 131, C(1), C(3)); 24.2 (*q*, ¹J(C,H)=129, CH₃); 20.0 (*t*, ¹J(C,H)=130, C(4)). CI-MS (NH₃): 415 (7, [*M*+NH₄]⁺), 400 (4, [*M*+H]⁺), 399 (2, *M*⁺), 343 (8), 281 (6), 234 (19), 233 (54), 232 (100), 204 (19), 189 (20), 187 (79), 161 (27), 150 (78), 137 (34), 120 (62), 92 (43).

(2R)-2-Acetyl-1,2,3,4-tetrahydro-5,8-dihydroxynaphthalen-2-yl para-nitrobenzoate

This compound was formed quantitatively when (-)-7 was left in presence of air. Colourless oil. IR (film): 3385 (*br*), 2921, 2360, 2339, 1722, 1716, 1651, 1537, 1489, 1351, 1292, 1103, 720. ¹H-NMR (400 MHz, CDCl₃): 8.27 (*dm*, ³*J*=8.9, H(arom)); 8.10 (*dm*, ³*J*=8.9, H(arom)); 6.57, 6.54 (2*d*, ³*J*=9.5, H–C(6), H–C(7)); 4.52, 4.42 (2*br. s*, $2 \times OH$); 3.33 (*br. dd*, ²*J*=17.6, ⁴*J*=1.5, H–C(1)); 3.16 (*br. d*, ²*J*=17.6, H–C(1)); 2.95, 2.66, 2.12 (3*m*, H₂–C(3), H₂–C(4)); 2.30 (*s*, CH₃). ¹³C-NMR (100.6 MHz, CDCl₃): 205.5 (*s*, CO); 163.9 (*s*, COO); 150.7, 147.3, 146.7 (3*s*, C(arom)); 130.9, 123.7, 123.6 (3*d*, C(arom)); 122.7, 120.6 (2*s*, C(arom)); 112.6 (*d*, C(arom)); 84.9 (*s*, C(2)); 29.9, 26.6, 20.2 (3*t*, C(1), C(3), C(4)); 24.2 (*q*, CH₃). CI-MS (NH₃): 389 (43, [*M*+NH₄]⁺), 388 (26), 387 (100), 372 (25 [*M*+H]⁺), 371 (20, *M*⁺), 370 (71), 313 (24), 295 (18), 254 (11), 216 (19), 199 (28), 152 (71), 108 (29), 91 (42).

(2R)-1,2,3,4-Tetrahydro-2-hydroxy-5,8-dimethoxynaphthahalen-2-yl methyl ketone ((-)-8)

A mixture of (-)-7 (20 mg, 0.050 mmol), anh. THF (5 ml), K_2CO_3 (200 mg, 1.45 mmol) and Me_2SO_4 (100 µl, 0.793 mmol) was refluxed under Ar for 2 days. Anh. MeOH (1 ml) was then added and the solution was refluxed for 2 hours (TLC control, silica gel, $CH_2Cl_2/light$ petroleum/EtOAc 8:1:1). The mixture was then poured into 1 N aqueous HCl (10 ml) and extracted with CH_2Cl_2 (20 ml, 3 times). After drying (MgSO₄), the solvent was evaporated and the residue was purified by FC (silica gel, $CH_2Cl_2/light$ petroleum/EtOAc 17:2:1), yielding 7.8 mg (62%), colourless oil (e.e.=66%). $[\alpha]_{589}^{25}$ =-22 (c=0.8, CHCl₃). All spectral data were identical to those reported for this compound.^{6,7} Anal. calc. for $C_{14}H_{18}O_4$ (250.29): C 67.18, H 7.25; found C 67.31, H 7.08.

Characteristics of the major intermediates **10** and **11** formed during the *t*-BuMe₂SiOSO₂CF₃promoted cycloaddition of **3b** to (+)-5. ¹³C-NMR (CD₂Cl₂, 100.6 MHz, -78° C) of **10**: 207.7 (CO), 174.1 (C(5)), 166.0 (COO), 150.9, 150.0 (C(7), C(8a)), 100.3 (C(2')), 94.5 (C(8)), 85.0 (C(2)), 72.7, 72.3 (C(4'), C(5')), 24.8, 22.9 (Me–C(4'), Me–C(5')). ¹³C-NMR (CD₂Cl₂, 100.6 MHz, 0°C) of **11**: 207.2 (CO), 166.0 (COO), 105.2 (C(2')), 85.1 (C(2')), 81.5, 80.5 (C(4'), C(5')), 18.3, 17.7 (Me–C(4'), Me–C(5')). Signals for C(1), C(3), C(4), C(4a), C(6) and MeCO are overlapped with those of the reactants.

Acknowledgements

We thank the Swiss National Science Foundation (CHiral2 program) and the Fondation Herbette (Lausanne) for generous financial support. We are grateful also to Mr Martial Rey and to Mr Francisco Sepulveda for their technical help.

References

- 1. Métral, J.-L.; Vogel, P. Tetrahedron Lett. 1984, 25, 5387-5388.
- 2. Métral, J.-L.; Lauterwein, J.; Vogel, P. Helv. Chim. Acta 1986, 69, 1287-1309.
- 3. Reymond, J.-L.; Vogel, P. Tetrahedron: Asymmetry 1990, 1, 729-736.

- 5. Guidi, A.; Theurillat-Moritz, V.; Vogel, P.; Pinkerton, A. A. Tetrahedron: Asymmetry 1996, 7, 3153–3162.
- 6. Wong, C. M.; Popien, D.; Schwenk, R.; Te Raa, J. Can. J. Chem. 1971, 49, 2712-2718.
- Arcamone, F.; Bernardi, L.; Patelli, B.; Giardino, P.; Di Marco, A.; Casazza, A. M.; Soranzo, C.; Pratesi, G. Experientia 1978, 34, 1255–1257; Broadhurst, M. J.; Hassall, C. H.; Thomas, G. J. J. Chem. Soc., Perkin Trans. I 1982, 2239–2248, 2249–2255; Swenton, J. S.; Freskos, J. N.; Morrow, G. W.; Sercel, A. D. Tetrahedron 1984, 40, 4625–4632; Terashima, S.; Jew, S.-S.; Koga, K. Tetrahedron Lett. 1978, 19, 4937–4940; Terashima, S.; Tamoto, K. Ibid. 1982, 23, 3715–3718; Suzuki, M.; Kimura, Y.; Terashima, S. Chem. Lett. 1985, 367–370; Suzuki, M.; Kimura, Y.; Terashima, S. Tetrahedron Lett. 1985, 26, 6481–6484; Suzuki, M.; Kimura, Y.; Terashima, S. Bull. Chem. Soc. Jpn. 1986, 59, 3559–3572; Hatakeyama, S.; Sugawara, K.; Takano, S. J. Chem. Soc., Chem. Comm. 1991, 1533–1534; Davis, F. A.; Kumar, A.; Chen, B.-C. Tetrahedron Lett. 1991, 32, 867–870; Rama Rao, A. V.; Yadav, J. S.; Bal Reddy, K.; Mehendale, A. R. J. Chem. Soc., Chem. Comm. 1984, 453–455; Rama Rao, A. V.; Yadav, J. S.; Bal Reddy, K.; Mehendale, A. R. Tetrahedron 1984, 40, 4643–4647; Sodeoka, M.; Iimori, T.; Shibasaki, M. Tetrahedron Lett. 1985, 26, 6497–6500; Nakajima, M.; Tomioka, K.; Koga, K. Tetrahedron 1993, 49, 10807–10816.
- Arcamone, F. M.; Bernardi, L.; Patelli, B.; Di Marco, A.; Ger Offen 2601785, Chem. Abstr. 1976 85: P 142918 j.
- See e.g.: Lown, L. W. Chem. Soc. Rev. 1993, 165-176; Priebe, W. Anthracycline Antibiotics: New Analogues, Methodes of Delivery and Mechanisms of Action; ACS Symposium Series 574; American Chemical Society: Washington, D.C., 1995; Weiss, R. B. Semin. Oncol. 1992, 19, 670-686.
- Hardy, M.; Carrupt, P.-A.; Vogel, P. Helv. Chim. Acta 1976, 59, 1685–1697; Carrupt, P.-A.; Vogel, P. Tetrahedron Lett. 1979, 4533–4536; Vogel, P. in Advances in Theoretically Interesting Molecules, Ed. R. P. Thummel, JAI Press, Inc., Greewich, CT, USA, 1989, vol. 1, p. 201–355; Roulet, J.-M.; Vogel, P.; Wiesemann, F.; Pinkerton, A. A. Tetrahedron 1995, 51, 1685–1696.
- 11. Tamariz, J.; Vogel, P. Helv. Chim. Acta 1981, 64, 188-197.
- 12. Dale, J. A.; Mosher, H. S. J. Am. Chem. Soc. 1973, 95, 512-519.
- 13. Terashima, S.; Tamoto, K. Tetrahedron Lett. 1983, 24, 2589-2592.
- Stothers, J. B. in Carbon-13 NMR Spectroscopy, Academic Press, New York, 1972; Olah, G. A.; Schlosberg, R. H.; Kelly, D. P.; Mateescu, G. D. J. Am. Chem. Soc. 1970, 92, 2546–2548.
- 15. Ferritto, R.; Vogel, P. Tetrahedron: Asymmetry 1994, 5, 2077-2092.

(Received in UK 8 September 1997)