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We designed and synthesized a series of novel 3,6-bicyclolide oximes, possessing linkers of varying
lengths to the secondary binding site. The E isomers exhibited excellent antibacterial profiles against a
broad spectrum of resistant pathogens.
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The development of novel, effective, and safe antibacterial
agents is urgently needed to control infectious disease caused
by antibiotic-resistant bacteria. Macrolide antibiotics are an
important class of therapeutic agents against bacterial infec-
tions.1 However, the extensive clinical use of macrolide antibiot-
ics has resulted in an increasing MLSB-resistance in respiratory
pathogens. In our laboratories, we have been pursuing new gen-
erations of macrolides. Recently, EP-1304,2 a 6,11-bicyclolide
core, was discovered. Subsequent chemistry efforts based on this
core structure resulted in EDP-420 (EP-013420),3 our first-in-
class bicyclolide antibiotic clinical candidate, currently in phase
II clinical trial for the treatment of community acquired pneumo-
nia. In continuation of our efforts, we have designed and synthe-
sized 3,6-bicyclolide oxime derivatives possessing linkers of
varying lengths attached to the secondary aromatic binding mo-
tifs4 (see Fig. 1).

The synthesis of 3,6-bicyclolide oxime is outlined in Scheme 1.
Key intermediate 11,12-carbamate 3,6-bicyclolide 2 was prepared
from 1 in 85% yield in a three-step one-pot fashion. The following
Osmium tetraoxide and sodium periodate mediated olefin cleavage
provided diketone compound 3 in 94% yield. The acid catalyzed
oxime formation was carried out using diketone 3 and hydroxyl-
amine 4a–4f in an aqueous alcoholic media at room temperature.
Oxime formation at C-9 ketone was not observed under these reac-
tion conditions. The resulting oximes 5a–5f were usually about 3
to 1 E/Z mixtures, which underwent 20-deacetylation to give 6a–
All rights reserved.

: +1 617 6070532.
6f as mixtures in similar E/Z ratios. The final desired 3,6-bicyclolide
E-oximes 7a–7f were isolated by either crystallization or prepara-
tive reverse-phase HPLC chromatography.5

The structure of ketolide 7b was confirmed by the X-ray crystal-
lography (Fig. 2).

The 3,6-bicyclolides 7a–7f and the reference compound, eryth-
romycin A, were tested against a panel of representative respira-
tory pathogens. Various macrolide- and multidrug-resistant
isolates were included in the panel in order to identify potent ana-
logues that could overcome macrolide resistance. Staphylococcus
aureus 29213, Streptococcus pyogenes 19615, and Streptococcus
pneumoniae 49619 are erythromycin-susceptible strains. Staphylo-
coccus aureus 27660 is an inducibly MLSB-resistant strain encoded
by an ermA gene. Staphylococcus aureus 33591 is an MRSA. Strepto-
coccus pyogenes 2912 is constitutive MLSB-resistant strain encoded
OO

EDP-420

OO

EP-1304

Figure 1. Structure of 6,11-bicyclolide EP-1304 and EDP-420.
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Scheme 1. Synthesis of 3,6-bicyclolide oximes.
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by an ermA gene, and S. pneumoniae 700906 is resistant strain
encoded by an erm gene. Streptococcus pyogenes 1323 and S. pneu-
moniae 7701 are efflux-resistant strains encoded by mefA genes.
Haemophilus influenzae 33929 is an ampicillin-resistant strain with
a b-lactamase positive determinant. The in vitro antibacterial
Figure 2. X-ray single crystal str
activities are reported as minimum inhibitory concentrations
(MICs), which were determined utilizing the broth-microdilution
method as per CLSI standards. The in vitro antibacterial activities
of 3,6-bicyclolides 7a–7f and reference compound are shown in
Table 1.
ucture of 3,6-bicyclolide 7b.



Table 2
In vitro antibacterial activities of 3,6-bicyclolide oximes—E/Z isomer comparison
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7b 8

Organism MIC (lg/ml)

7b 8

S. aureus 29213 Ery S 60.06 0.5
S. aureus 27660 MLS Ri 60.06 0.5
S. aureus 33591 MRSA >64 >64
S. pneumoniae 49619 Ery S 60.06 60.06
S. pneumoniae 7701 Ery R-mef 60.06 0.125
S. pneumoniae 700906 Ery R-erm >64 >64
S. pyogenes 19615 Ery S 60.06 60.06
S. pyogenes 1323 Ery R-mef 0.125 0.25
S. pyogenes 2912 Ery R-erm 4 64
H. influenzae 33929 Amp R 2 16
H. influenzae Amp S 2 8
M. catarrhalis 60.06 0.125

Table 1
In vitro antibacterial activities of 3,6-bicyclolide oximes—length optimization
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(CH2)n

Organism MIC (lg/ml)

7a (n = 0) 7b (n = 1) 7c (n = 2) 7d (n = 3) 7e (n = 4) 7f (n = 5) Ery A

S. aureus 29213 Ery S 60.06 60.06 0.125 0.125 0.25 0.25 0.5
S. aureus 27660 MLS Ri 60.06 60.06 0.125 0.125 0.25 0.25 >64
S. aureus 33591 MRSA >64 >64 >64 >64 64 >64 >64
S. pneumoniae 49619 Ery S 60.06 60.06 60.06 60.06 60.06 60.06 60.06
S. pneumoniae 7701 Ery R-mef 60.06 60.06 60.06 60.06 0.125 0.125 4
S. pneumoniae 700906 Ery R-erm 32 >64 16 4 4 8 >64
S. pyogenes 19615 Ery S 60.06 60.06 60.06 60.06 60.06 60.06 0.015
S. pyogenes 1323 Ery R-mef 60.06 0.125 0.125 60.06 0.25 0.125 16
S. pyogenes 2912 Ery R-erm 4 4 8 8 16 8 >64
H. influenzae 33929 Amp R 1 2 2 2 4 4 4
H. influenzae Amp S 2 2 2 2 8 4 4
M. catarrhalis 60.06 60.06 60.06 0.125 0.25 0.25 0.13
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The undesired Z-oxime isomer 8 was isolated and subjected to
in vitro antibacterial test together with the corresponding E-oxime
isomer 7b (Table 2). This direct comparison clearly showed that the
E-oxime was much more potent than the Z-oxime.

All 3,6-bicyclolide oximes 7a–7f showed good antibacterial
activities against the susceptible strains, mef resistant strains, as
well as H. influenzae strains. These results strongly suggested that
each of the 3,6-bicyclolide oximes are good templates for further
modifications.

To overcome S. pneumoniae and S. pyogenes erm resistant
strains, zero carbon linker 3,6-bicyclolide oximes 13g–13n
were synthesized as shown in Scheme 2. Boronic acids 9g–
9n were reacted with N-hydroxyl phthalimide via copper (II)
acetate-catalyzed coupling condition to give 10g–10n.6 Treat-
ing 10g–10n with ammonia in methanol provided zero carbon
linker O-hydroxylamine 11g–11n. Oxime formation reactions
from diketone 3 and 11g–11n were carried out in a similar
fashion as previously described to give 3,6-bicyclolide E/Z
oxime mixtures 12g–12n. Finally, 20-deacetylation followed
by preparative reverse-phase chromatography provided the
desired zero carbon 3,6-bicyclolide E-oximes 13g–13n
(see Table 3).

Compared to its phenyl analog, 3-pyridyl oxime 13g showed
slight antibacterial improvement against S. pneumoniae erm and
Haemophilus influenzae. Among the three chlorophenyl derivatives
13h, 13i, and 13j, the meta-substituted oxime 13i showed the most
potent antibacterial profile against the resistant strains. Further-
more, the three biphenyl analogs 13k, 13l, and 13m appeared to
give similar antibacterial activity pattern. Meta-biphenyl oxime
13l gave the most balanced antibacterial profile and it even exhib-
ited good potency against S. aureus resistance strain MRSA. These
zero carbon 3,6-bicyclolides represent a novel and promising mac-
rolide series.

In conclusion, we designed and synthesized a series of no-
vel 3,6-bicyclolide oximes, possessing linkers of varying
lengths to the secondary binding site. Further modifications
of zero carbon linker 3,6-bicyclolide oximes improved antibac-
terial activities against a broad panel of macrolide-resistant
bacterial strains. Good overall antibacterial activities of 3,6-
bicyclolide oximes warrant further efforts on this novel class
of antibiotics.
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Scheme 2. Synthesis of zero carbon linker 3,6-bicyclolide oximes.

Table 3
In vitro antibacterial activities of 3,6-bicyclolide oximes—length optimization
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Organism MIC (lg/ml)

7a 13g 13h 13i 13j 13k 13l 13m 13n Ery A
Ar= Ph 3-Pyridyl 2-Cl-Ph 3-Cl-Ph 4-Cl-Ph 2-Ph-Ph 3-Ph-Ph 4-Ph-Ph 2-Napthyl

S. aureus 29213 Ery S 60.06 0.125 60.06 60.06 60.06 0.5 0.125 0.5 0.25 0.5
S. aureus 27660 MLS Ri 60.06 0.125 60.06 60.06 60.06 0.5 0.125 0.5 0.25 >64
S. aureus 33591 MRSA >64 >64 64 32 >64 16 4 16 32 >64
S. pneumoniae 49619 Ery S 60.06 0.125 60.06 60.06 60.06 60.06 60.06 60.06 60.06 60.06
S. pneumoniae 7701 Ery R-mef 60.06 0.125 60.06 60.06 60.06 0.5 60.06 0.125 0.125 4
S. pneumoniae 700906 Ery R-erm 32 16 32 8 16 16 2 0.25 0.5 >64
S. pyogenes 19615 Ery S 60.06 60.06 60.06 60.06 60.06 60.06 60.06 60.06 60.06 0.015
S. pyogenes 1323 Ery R-mef 60.06 0.25 60.06 60.06 60.06 0.5 0.125 0.25 0.125 16
S. pyogenes 2912 Ery R-erm 4 4 4 1 2 16 4 2 2 >64
H. influenzae 33929 Amp R 1 1 2 2 4 8 4 8 8 4
H. influenzae Amp S 2 1 2 2 4 8 4 8 4 4
M. catarrhalis 60.06 60.06 60.06 60.06 60.06 0.5 0.125 1 0.25 0.13
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