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Several novel heterocyclic-fused naphthalimides intercalators with chiral amino side chains were inves-
tigated. Their side chains’ chiral configuration determines DNA binding activities in the order: S-enanti-
omers > R-enantiomers. And their DNA photodamaging activities were in good agreement with their DNA
binding constants, the S-enantiomers could photocleave circular supercoiled pBR322 DNA more effi-
ciently than their R-enantiomers. S-enantiomer B3 could photodamage DNA at 0.2 lM and cleave super-
coiled plasmid DNA from form I to form II completely at 50 lM. Almost all of these intercalators showed
effective cytoxicities against human lung cancer cells and murine leukemia cells. S-enantiomers showed
different antitumor cytotoxicity by comparison with R-enantiomers. This work may provide additional
information for the role of amino side chains on intercalators as antitumor agents.

� 2008 Elsevier Ltd. All rights reserved.
DNA intercalating agents as major class of antitumor com-
pounds have received most and continued attention. They usually
function as DNA-targeted topoisomerase I and/or II inhibitors. Usu-
ally these agents are characterized by the presence of a tri- or tet-
racylic annelated planar and aromatic ring capable of inserting the
nucleic acid bases5 and one or two flexible amino side chains for
promoting DNA affinity through electrostatic or hydrophobic inter-
actions.1–3 N,N-dimethyl alkyldiamino group and its analogues, for
example, are widely applied as anticancer agents in conjugation
with an intercalating moiety including anthraquinone, acridine,
benzimidazole-quinoline, fluorenone, pyridine-diones, naphthali-
mides, etc.2,4 (Fig. 1).

Up to now, little is known for interactions between chiral interca-
lators and DNAs,5,6 let alone effects of chirality of amino side chains
on DNA binding ability, photodamage activity as well as antitumor
cytotoxicity. However, chirality plays very important roles in biolog-
ical system. DNA itself is a chiral molecule with right-handed helical
configuration. The helical grooves of DNA were considered to be the
most pronounced enantio-selectivity part, while the insertion of chi-
ral moiety between the achiral DNA bases is generally believed to
contribute less enantioselectivity.5,7–10

Naphthalimides are well-known DNA photocleavers11, and
naphthalimides bearing side chains are well-known antitumor
All rights reserved.
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agents against a variety of murine and human tumor cells.7 How-
ever, less investigation on naphthalimides with chiral amino side
chains has been performed. We ever reported heterocyclic naph-
thalimides with achiral amino side chains as highly efficient artifi-
cial nucleases and antitumor agents.12 In this study, we report a
series of bioactive heterocylclic naphthalimides with chiral amino
side chains (Fig. 2). Here, racemic (X), chiral (R)-(+)- and (S)-(�)-N-
ethyl–2-(aminomethyl) pyrrolidine (R, S, respectively) are side
chains.

The synthesis of An, Bn, Cn and Dn (n = X, R, S) was carried out by
the condensation reaction of the corresponding anhydride (A0, B0,
C0 and D0) with amine, starting from 4-bromo-3-nitro or 4-bromo-
1,8-naphthalic anhydride. The synthesis strategies were outlined
in Figure 3.13–15 Their structures were confirmed by IR, 1H NMR
and HRMS.16

The Scatchard binding constants for calf thymus DNA (CT-DNA)
were monitored by fluorescence spectroscopy (in 30 mM Tris–HCl
buffer, pH 7.0).17 Table 1 listed their detailed UV–Vis, fluorescence
data, Scatchard binding constants and anticancer activities. It indi-
cated the Scatchard binding constants of S-enantiomers were high-
er than those of the corresponding R-enantiomers as well as those
of the racemic ones. The order of their Scatchard binding constants
was: (1) B > C > D > A for compounds, which was related to the
introduction of a sulphur atom into these molecules, and (2)
S > X > R for configuration.

DNA binding affinity is known to be determined by several ac-
tions including groove binding, DNA intercalation and electrostatic
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Figure 1. Intercalating moieties and amino side chains of well-known antitumor agents.
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Figure 2. Heterocyclic-fused naphthalimide chiral amino side chains.
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Figure 3. Synthesis routes summary. (a) NaOH, H2O, 80–85 �C, 8 h, 85% yield; (b)
SnCl2, HCl, 80 �C, 6 h, 66% yield; (c) PPA, benzoic acid, 135 �C, 4 h, 62% yield; (d)
RNH2, ethanol, reflux, 3 h, 85% yield; (e) NaS2, S, 100 �C, 8 h; (f) benzaldehyde, acetic
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reflux, 4 h, 97% yield; (i) SnCl2/concentrated HCl, 96% yield; (j) Pochorr cyclisation:
NaNO2, H2O–HCl–HOAc, 0–5 �C, 2 h; CuSO4, HOAc, reflux, 2 h, 64% yield; (k) RNH2,
ethanol, reflux, 3 h, 83% yield; (l) 2-aminobenzenethiol, K2CO3, DMF, reflux, 30 min,
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binding. For those which carry the same intercalative moiety, their
DNA binding affinity differences mainly come from electrostatic
interactions between amino side chains and DNAs. Preferential
and average binding value of these enantiomers was K(R)/
K(S) � 0.5, which is in very similar with Becker’s investigation for
both the anthracene and the pyrene compounds5, although the
Becker’s structure is quite different from these molecules. The slight
enantiomeric preference was explained in terms of orientation
polarity during the binding, by which any intrinsic enantioselectiv-
ity is canceled by averaging of opposite binding orientations.5

DNA photocleavage activities of these chiral DNA intercalators
were evaluated. In the dark, they did not promote DNA strand
breaking. Being irradiated under 365 nm light, the DNA cleavage
ability of S-enantiomers was by far higher than that of R-enantio-
mers. The order of DNA cleavage efficiency by these compounds
was determined to be S > X > R and Bn > Cn > Dn > An, which were
almost parallel with their DNA binding abilities. To the best of
our knowledge, this is the first report for the difference between
S- and R-enantiomers of photo-activated naphthalimides. It could
be concluded the S-amino side chain showed greater potential in
developing novel DNA intercalators with higher DNA binding and
in turn DNA cleavage efficiency.

Figure 4 showed the concentration dependence of DNA photoc-
leavage efficiencies. AS at 0.5 lM could damage supercoiled plasmid
DNA pBR322 (Fig. 4c), while under 1 h light exposure, 0.2 lM of BS

and 0.5 lM of CS started to cleave DNA (Fig. 4d, 4f). The R-enantio-
mer BR could cleave DNA at 5 lM but could not converse Form I com-
pletely to Form II even when its concentration reached 50 lM
(Fig. 4e), however, S-enantiomer BS could cleave plasmid DNA from
form I to form II by 100% at 50 lM (Fig. 4d). The order of DNA cleav-
age efficiency by these chiral compounds was BS > CS > AS.

Mechanism experiments were performed by adding different
scavengers (Fig. 5). Taking AS, Bs, Cs as examples (Fig. 5a, b and
d), histidine (singlet oxygen quencher) and ethanol (hydroxyl rad-
ical scavenger) had no obvious effect on photocleavage efficiency,
indicating that singlet oxygen and hydroxyl radical were not likely
to be involved in the cleaving species. However, the DNA-cleaving
activity of AS, BS, CS decreased dramatically in the presence of DTT
(dithiothreitol, superoxide anion scavenger). DTT could retard the
superoxide anion radicals, which might form after oxygen was
activated by accepting an electron transferred from nucleobase to



Table 1
Spectra data, photocleaving activity, and cytotoxicity

UV/nm (lge) FL/nm (U) Ka (�105 M�1) KR/K IC50 (lM)

A549 P388

Ax 375 (3.10) 428 (0.0089) 1.24 2220 383
AR 375 (3.63) 430 (0.0144) 0.82 0.89 13.9
AS 375 (3.61) 429 (0.0184) 1.62 0.51 2.72 4.82
Bx 381 (3.94) 454 (0.0205) 9.07 2.88 0.47
BR 381 (3.77) 454 (0.0231) 6.23 6.02 2.28
BS 381 (3.75) 454 (0.0216) 10.0 0.62 0.58 4.90
Cx 469 (3.81) 522 (0.1805) 3.02 0.49 12.2
CR 469 (3.57) 522 (0.1501) 2.51 8.84 12.3
CS 469 (4.24) 523 (0.1311) 6.10 0.41 0.57 5.11
Dx 315 (4.47) 429 (0.0056) 2.32 0.16 0.59
DR 315 (4.42) 429 (0.0022) 1.23 0.07 3.35
DS 315 (3.98) 429 (0.0072) 2.85 0.43 0.23 1.17
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intercalator. However, the addition of SOD (superoxidedimutase)
did not obviously inhibit the DNA cleavage as DTT did. It was also
found that there was no difference in photocleavage mechanism
between R/S-enantiomers BR and BS (Fig. 5b and c).

The antitumor activities against human lung cancer cell (A549)
and murine leukemia cell (P388) of these novel compounds with race-
mic, chiral (R)-(+)- and (S)-(�)-N-ethyl-2-(aminomethyl) pyrrolidine
side chains, were evaluated by means of Sulforhodamine B (SRB) as-
say or MTT tetrazolium dye assay (in dark or under daily scattered
light), respectively (Table 1). The racemic, (R)-(+)- or (S)-(�)-enantio-
Figure 5. Mechanism experiments of photocleavage for AS, BS, BR and CS. (a) (Lane 1–3) D
(1.7 M), respectively; (lane 4), DNA and As; (lane 5) DNA alone (hm); (lane 6) DNA alone (n
ethanol (1.7 M), respectively; (lane 4), DNA and BS; (lane 5), DNA alone (hm); (lane 6), DN
(30 mM), ethanol (1.7 M), respectively; (lane 4), DNA and BR; (lane 5), DNA alone (hm);
(6 mM), DTT (30 mM), ethanol (1.7 M), respectively; (lane 4), DNA and CS; (lane 5), DNA

Figure 4. Photocleavage of supercoiled pBR322 DNA in the buffer of HEPES (20 mM
photocleavage by compounds (100 lM) for 1 h. Lane 1, DNA alone (hm), lane 2, DNA a
photocleavage by compounds (50 lM) for 1 h. (Lane 1) DNA alone (hm), (lane 2) DNA
photocleavage by As at various concentrations for 2 h. (Lane 1–5) As at concentration of 50
(d) DNA photocleavage by BS at various concentrations for 1 h. (Lane 1–5), BS at concentra
hm); (e) DNA photocleavage by BR at various concentrations for 1 h. (Lane 1–5), BR at co
alone (no hm); (f) DNA photocleavage by CS at various concentrations for 1 h. Lane 1–5, C
7), DNA alone (no hm).
mers showed different bioactivities, respectively. Bx and Dx showed
the strong cytotoxicity for P388 (IC50, 0.47 and 0.59 lM, respectively),
DR showed the highest cytotoxicity against A549 (IC50, 0.07 lM). It
could be found that the cyctotoxicities of racemic ones maybe lower
or maybe higher than those of the corresponding R- or S-enantiomer
alone. It implied that for R- and S-enantiomer, beside their different
and competing actions with DNA and Topo II targets, there might
be some unknown (positive or negative) mechanisms in cells, which
strengthen or weaken the cytotoxicity of racemics.

Although there were no obvious or direct relationship between
their cytotoxicities and DNA binding affinities, it was interesting
that the chiral amino side chains did play a very important role
in their antitumor cytotoxicities. R/S-enantiomers behaved quite
differently in terms of cytotoxicity against different cell lines, sug-
gesting that the chiralities of amino side chains is of special impor-
tance in developing novel antitumor agents.

In conclusion, the chirality of amino side chains of naphthalimides
affect DNA binding affinity, DNA photocleavage activity as well as
cytotoxicity, which might provide considerations for developing
highly efficient DNA intercalators and better anti-tumor agents.
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4.49 (s, br, 1H), 7.49–7.59 (m, 3H), 7.73–7.75 (d, J = 7.6 Hz, 1H), 8.33–8.35
(d, J = 7.6 Hz, 1H), 8.44–8.53 (m, 3H), ESI-HRMS: calcd for C25H22N2O2S
(M+H+): 415.1480, found: 415.1476 IR (KBr): 2964, 1690, 1649, 1369 cm�1.
[a] = +5.91 (C = 0.001, CHCl3).
CS: 198.4–198.6 �C. 1H NMR (d6-DMSO) d (ppm): 1.23 (s, br, 3H), 1.75–1.97
(m, 4H), 2.86 (s, br, 2H), 3.34–3.52 (m, 3H), 4.20 (s, br, 1H), 4.34 (s, br, 1H),
7.48–7.58 (m, 3H), 7.74–7.76 (d, J = 8.0 Hz, 1H), 8.31–8.33 (d, J = 8.4 Hz, 1H),
8.45–8.50 (m, 3H); ESI-HRMS: calcd for C25H22N2O2S (M+H+): 415.1480,
found: 415.1481; IR (KBr): 2964, 1688, 1648, 1366 cm�1. [a] = �4.65
(C = 0.001, CHCl3).
Dx: M.p.: 204.9–205.2 �C. 1H NMR (d6-DMSO) d (ppm): 1.32 (s, 3 H), 1.84–
2.08 (m, 4 H), 2.22 (m, 1 H), 2.39 (m, 1 H), 3.18 (br, 1 H), 3.63–3.77 (m, 2H),
4.41–4.57 (br, 2 H), 7.67 (m, 3 H), 8.04–8.08 (t, J1 = 8.0 Hz, J2 = 7.6 Hz, 1 H),
8.22–8.23 (m, 2 H), 8.60–8.61 (d, J = 7.2 Hz, 1 H), 8.71–8.73 (d, J = 8.4 Hz,
1 H), 9.00 (s, 1 H). ESI-HRMS: calcd for C26H23N3O2S (M+H+): 442.1589,
found: 442.15997. IR (KBr): 3063, 2938, 2873, 1699, 1655, 1348 cm�1.
DR: Mp.: 198.9–199.3 �C. 1H NMR (d6-DMSO) d (ppm): 1.29 (s, 3 H), 1.87 (br,
s, 4 H), 2.21 (br, 1 H), 2.392 (br, 1 H), 3.18 (br, 1 H), 3.62 (br, s, 2 H), 4.44 (br,
1 H), 4.57 (br, s, 1 H), 7.63–7.66 (m, 3 H), 8.02–8.03 (t, J1 = 8.0 Hz, J2 = 7.6 Hz,
1 H), 8.20–8.22 (m, 2 H), 8.60–8.58 (d, J = 8.8 Hz, 1 H), 8.69–8.71 (d,
J = 8.0 Hz, 1 H), 8.98 (s, 1 H). [a] = +13.54 (C = 0.001, CHCl3). ESI-HRMS:
calcd for C26H23N3O2S (M+H+): 442.1589, found: 442.1589. IR (KBr): 3062,
2964, 1699, 1659, 1332 cm�1.
DS: Mp.: 178.9–179.4 �C. 1H NMR (d6-DMSO) d (ppm): 1.33–1.37 (t,
J1 = 7.6 Hz, J2 = 6.8 Hz, 3 H), 1.84–2.08 (m, 4 H), 2.21 (m, 1 H), 2.38 (m,
1 H), 3.18 (br, 1 H), 3.62–3.77 (m, 2 H), 4.41–4.44 (m, 1 H), 4.52–4.58 (m,
1 H), 7.67 (m, 3 H), 8.04–8.08 (t, J1 = 8.4 Hz, J2 = 7.6 Hz, 1 H), 8.22–8.23 (m,
2 H), 8.60–8.62 (d, J = 7.6 Hz, 1 H), 8.72–8.74 (d, J = 8.0 Hz, 1 H), 9.00 (s, 1 H);
[a] = �6.54 (C = 0.001, CHCl3). ESI-HRMS: calcd for C26H23N3O2S (M+H+):
442.1589, Found: 442.1576. IR (KBr): 2923, 2852, 1701, 1661, 1334 cm�1.
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