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Protease Chirazyme' P-2 hydrolyses racemic a-chloroacetoxyphosphonates (+1 enantiose- 
lectively to furnish a-hydroxyphosphonates (R)-(-)-2 with eels ranging from 31 to 97% at a 
conversion of 45% and unreacted esters (S)-(+)-1. 

Keywords: a-hydroxyphosphonates/chiral, nonracemic; a-chloroacetoxyphospho- 
nates/enantioselective hydrolysis; proteases; Mosher esters; subtilisin; kinetic resolution 

INTRODUCTION 

In recent years enzyme-catalyzed reactions have found an astonishingly 
broad application for the preparation of chiral, nonracemic compounds in 
organic chemistry.[21 Especially lipases and proteases are most widely 
used to hydrolyse esters and amides enantioselectively on a laboratory and 
on an industrial scale. a-Hydroxyphosphonates are base-labile alcohols, 
which are easily prepared as racemates by the Abramov reaction.[31 The 
synthesis of chiral, nonracemic a-hydroxypho~phonates[~] has become an 
important area of research, particularily in connection with the search for 

* Correspondence Author: Telefax (internat.): (0043-1) 3 1367-2280 E-mail: 
frha@felix.orc.univie.ac. at. 
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232 FRIEDRICH HAMMERSCHMIDT and FRANK WUGGENIG 

biologically active surrogates[51 for the corresponding carboxylic acids 
and phosphoric acid esters. a-Hydroxyphosphonates are starting materials 
for other a-substituted phosphonates and phosphonic acids, noteably 
a-aminophosphonic acids.[61 

We have found that a-acetoxy- and a-chloroacetoxyphosphonates are 
resolved kinetically by lipases AP 6 (from Aspergillus niger) and FAP 15 
(from Rhizopus oryzae) with good to high enantiomeric excesses depend- 
ing on the protecting groups at phosphorus, the acyl (acetyl or chloro- 
acetyl) and the alkyl group of the underlying aldehyde.[71 Both enzymes 
hydrolyse the (S) esters preferentially and lipase AP 6 has the much 
broader substrate specificity. 

RESULTS AND DISCUSSION 

In an effort to find ( R )  selective hydrolytic enzymes, we tested commer- 
cially available proteases. Preliminary experiments showed that racemic 
diisopropyl 1-acetoxyethylphosphonate was not hydrolysed in a biphasic 
system by proteases B, M, N, and S from Amano, but only very slowly by 
protease Chirazyme@ P-2 (an alcaline endoprotease of serine type). This 
last enzyme accepted also racemic diisopropyl 1 -acetoxy-(2-thienyl)meth- 
ylphosphonate as substrate. 120 mg of enzyme were sufficient to hydro- 
lyse 45% of 1 mmol of substrate in 16 h at room temp. and the ee of the 
isolated a-hydroxyphosphonate having ( R )  configuration was 7 1%. These 
two substrates are easily transformed by lipases AP 6 and FAP 15 giving 
(S) a-hydroxypho~phonates.~~~~~ This result was encouraging and we 
decided to study the more reactive chloroacetates (k)-l of representative 
a-hydroxyphosphonates, as the low reaction rate of the two compounds 
was at least in part attributed to the acetate group. All chloroacetates, 
except (+)-lb prepared by esterification of diethyl 1 -hydroxyhexylphos- 
phonate using chloroacetic anhydride/py~idine,[~] are known compounds. 

The protease was applied in the same way as the lipases (Scheme l).[71 
Briefly, 1 mmol of (k)-l was hydrolysed at constant pH 7.0 at room temp. 
in a vigorously stirred biphasic system consisting of a sterile phosphate 
buffer, t-butyl methyl ether, and hexanes with an appropriate amount of 
enzyme (Scheme 1, Table I). At a conversion of 45% (by consumption of 
base) 1 M HCl was added to bring pH to 4.0. Extractive workup and flash 
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CHIRAL-a-HYDROXYPHOSPHONATES 233 

HO H 

P(OXOR2)2 

W-(-1-2 

H OC(0)CHZCl 

RlX P(0)(OR2)2 
(S)-(+)-l 

€ OC(O)CH2Cl 

R 1 A ( O ~ ( * R 2 1 2  

(f)-1 

Reagents and conditions: i, 1 mmol Wl, 17 ml 
phosphate buffer (50 mM), 2 ml t-BuOMe, 2 ml 
hexanes, protease, room temp., pH 7.0. 

a 
b 

d 
e 
f 
g 
h 
i 

k 

C 

j 

i-Pr 
Et 
Et 
i-Pr 
i-Pr 
i-Pr 
i-Pr 
i-Pr 
i-Pr 
Et 
i-Pr 

SCHEME 1 Protease-catalyzed hydrolysis of 1-chloroacetoxyphosphonates (f)-1 

chromatography furnished 1 and 2. The ee and absolute configuration of 
(-)-2 were determined by NMR spectroscopy of the Mosher ester. Chloro- 
acetates (+)-1 can be hydrolysed without racemisation under mild condi- 
tions (Et,N/MeOH) if desired. The data of the twelve experiments and for 
comparison also the data from the literaturer7] obtained with lipase AP 6 
for the same substrates are compiled in Table I. 

Protease Chirazyme@ P-2 hydrolysed in all cases tested preferentially 
the ( R )  enantiomer, lipase AP 6 the opposite enantiomer, except for l k  
(entries 1 - 1 I ) .  Increasing the length of the alkyl group R' of (k)-l from 
n-pentyl to n-nonyl leads to a decrease in the reaction rate and the ee as 
with lipase AP 6 (entry 3). Chloroacetates (f)-1 having branched (isopro- 
pyl, isobutyl, t-butyl, entries 4-6) or cyclic (cyclobutyl, cylcohexyl, entries 
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234 FRIEDRICH HAMMERSCHMIDT and FRANK WUGGENIG 

7 and 8) residues for R' are hydrolysed with excellent enantioselectivity 
ranging from 85-97% by protease Chirazyme@ P-2 compared to lipase AP 
6, which does not accept (+)-lf as substrate. The active site of the protease 
cannot accommodate a cycloheptyl ring as evidenced by (+)-li (entry 9). 
(+)-lk is resolved by both enzymes, but the optical purities of the isolated 
a-hydroxyphosphonates (-)-2 are just 48 and 52%, respectively (entry 11). 
The latter substrate was also hydrolysed by cross linked microcrystalline 
subtilisin['] (ChiroCLECTM-BL) in the phosphate buffer without organic 
solvent (entry 12). The results are very similar to those obtained with pro- 
tease Chirazyme@ P-2. 

Chloroacetoxyphosphonate (f)-le is an excellent substrate for protease 
Chirazyme@ P-2. Finally, the corresponding a-chloroacetamidophospho- 
nate (+)-4 was prepared according to Scheme 2. The a-hydroxyphospho- 
nate'"] (+)-2e was transformed[I2] into azide (3-3, which was reduced 
catalytically to the amine and acylated to give a-chloroacetamidophospho- 
nate (39-4. It was not hydrolysed by Chirazyme@ P-2, even if 216 mg of 
enzyme were used for 1 mmol of substrate at a reaction time of 24 h. 

N3 

1) Pd/C/H2MCl NHC(O)CH2C1 
2) NaOH I 

pyridine 
- 

53% 
SCHEME 2 Synthesis of chloroacetamide (f)-4 

In summary, a-choroacetoxyphosphonates (+)-1 are resolved by pro- 
tease Chirazyme@ P-2 in a biphasic system at pH 7.0 to afford (R)  config- 
urated a-hydroxyphosphonates (-)-2 with an ee of up to 97%. The best 
results in terms of enantiomeric excess are obtained, if R' of (f)-1 is a 
short straight chain alkyl group, a short branched or a cyclic (with up to six 
carbon atoms) alkyl group. 
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236 FRIEDRICH HAMMERSCHMIDT and FRANK WUGGENIG 

EXPERIMENTAL 

For general remarks see ref. 1 

(k)-Diisopropyl I -azido-3-methylbutylphosphonate [(*)-3] 
2.52 g (10 mmol) of hydroxyphosphonate"'] (f)-2e were transformed into 
azide (+)-3 by a literature procedure[l2I, using a 0.91 M solution of HN3 in 
toluene. The crude product obtained after removal of diethyl hydrazodicar- 
boxylate was purified by flash chromatography (petroleum ether : 
acetone = 5 : 1; R, = 0.35) to furnish 2.02 g (73%) of azide (3-3  as a vis- 
cous oil. 

IR (Si): v=2980 cm-', 2112, 1387, 1261, 1106, 989. - 'H NMR 
(400.13 MHz, CDCl3); 6 = 0.90 [d, J = 6.9 Hz, 3H, CH(CH3)2], 0.95 [d, 
J =  6.7 Hz, 3H, CH(CH3)2], 1.33 [d, J =  6.4 Hz, 12H, CH(CH&], 1.60 
(m, 2H, CH2), 1.82 (m, lH, CH), 3.34 (ddd, J= 3.4, 11.8, 12.8Hz, lH, 
CHP), 4.75 (m, 2H, OCH). - 13C NMR (100.61 MHz, CDCI,): 6 = 20.85 
(CH3), 23.15 (CH3), 23.93 and 23.97 [2xd, Jpc = 4.2 Hz, OCH(CH3),], 
24.11 [d, Jpc=3.4Hz, OCH(CH3)2], 24.14 [d, Jpc=3.6Hz, 
OCH(CH3)2], 25.04 [d, Jpc = 13.6 Hz, CH(CH3)2], 36.80 (CH2), 55.83 (d, 
Jpc= 156.7 Hz, CHP), 71.59 (d, Jpc =7.2 Hz. OCH), 71.72 (d, 
Jpc = 7.3 Hz, OCH). - CllH24N303P (277.30); calcd. C 47.64, H 8.72, N 
15.15; found C 47.91, H 8.53, N 14.88. 

(k)-Diisopropyl I -chloroacetamido-3-methylbutylphosphonat [(f)-4] 
1.98 g (7.14 mmol) of azide ( 9 - 3  were hydrogenated in a mixture of 
60 ml of dry ethanol and 4 ml of concentrated hydrochloric acid on 0.4 g 
of palladium (10%) on charcoal in a Parr apparatus for 5 hrs at 3.4 atm at 
room temperature. The catalyst was removed and the solution was concen- 
trated in vacuo. 10 ml of water were added to the residue and the pH was 
adjusted to 9 - 10 using 2 N NaOH, followed by extraction with chloro- 
form (3 x 20 ml). The combined organic layers were dried with Na2S04 
and concentrated in vacuo to give 1.43 g (5.69 mmol) of the a-aminophos- 
phonate as an oil. 

A solution of 1.46 g (8.53 mmol) of chloroacetic anhydride in 10 ml of 
dry dichloromethane was added dropwise to a stirred and cooled (0 "C) 
solution of 1.43 g (5.69 mmol) of the above a-aminophosphonate and 
1.35 g (17.1 mmol, 1.38 ml) of pyridine in 30 ml of dry dichloromethane 
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CHIRAL-a-HYDROXYPHOSPHONATES 237 

under argon. After stirring for two hrs at 0°C (TLC: dichloromethane : 
ethyl acetate = 5 : 3), 9 ml of water were added and stirring was continued 
for another 10 min. Then 0.9 ml of concentrated hydrochloric acid were 
added and the organic phase was removed. The aqueous phase was 
extraced twice with dichloromethane. The combined organic layers were 
washed with water and a saturated solution of sodium hydrogen carbonate, 
dried with MgS04, and concentrated in vacuo. The residue was crystal- 
lised from dichloromethanehexanes to give 1.25 g (53%, starting from 
azide) of chloroacetamide (+)-4; mp. 92-96 "C. 

IR (nujol): v =3218 cm-', 3056, 1687, 1556, 1320, 1230, 1159, 110.5, 
994, 890. - 'H NMR (400.13 MHz, CDC13): 6 = 0.86 [d, J = 5.9 Hz, 3H, 
CH(CH3)2], 0.88 [d, J =  6.4 Hz, 3H, CH(CH3)2], 1.24, 1.25, 1.26 and 1.27 
[4xd, J = 6.4 Hz, each 3H, OCH(CH3)2], 4.01 (AB-system, 
JAB = 15.0Hz, 2H, CH2Cl), 4.35 (m, lH, CHP), 4.64 [non, J=6 .4Hz,  
2H, OCH(CH,),], 6.64 (d, J = 9 . 8  Hz, IH, NH). - I3C NMR 
(100.61 MHz, CDCl3): 6 = 21.17 (CH3), 23.31 (CH3), 23.87 [d, 
Jpc = 4.9 Hz, OCH(CH3)2], 24.04 [d, Jpc = 2.5 Hz, OCH(CH3)2], 24.05 
[d, Jpc = 3.7 Hz, OCH(CH,),], 24.56 [d, Jpc = 13.3 Hz; CH(CH3)2], 
38.54 (CH2), 42.48 (CHzCl), 44.94 (d, Jpc  = 157.7 Hz, CHP), 71.30 (d, 
Jpc=7.3 Hz, OCH), 71.34 (d, Jpc = 6.9Hz, OCH), 165.37 [d, 
JPc = 5.2 Hz, CO). - C13H27C1N04P (327.79); calcd. C 47.63, H 8.30, N 
4.27; found C 47.70, H 8.28, N 4.54. 
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