Synthesis of Cycloalk-1-enylglycines

By Mamoru Suzuki,* Ken-ichi Nunami, and Naoto Yoneda

(Research Laboratory of Applied Biochemistry, Tanabe Seiyaku Co. Ltd., 16-89 Kashima-3-chome, Yodogawa-ku, Osaka 532, Japan)

Summary Saponification of methyl N-formylcycloalkylideneglycinates (I) leads to migration of the double bond to afford N-formylcycloalk-1-enylglycines (II), which are converted into cycloalk-1-enylglycines (IV) by acid hydrolysis.

Some aliphatic $\beta\gamma$ -unsaturated α -amino acids¹ possess potent biological activity.² In particular, cyclic $\beta\gamma$ -unsaturated amino acids such as cyclohex-1-enylglycine have recently received much attention as intermediates for synthesis of penicillin and cephalosphorin derivatives.³ Only a few methods have been reported for their synthesis, e.g. the Strecker syntheses using cyclohex-1-enecarbaldehyde⁴ and the nitrosation of cyclohex-1-enyl acetate followed by reduction.⁴ However, these methods lack versatility for synthesis of many types of cyclic amino acids.

We now report a method for the synthesis of cycloalk-1-enylglycines from cycloalkylideneglycine derivatives. The starting cycloalkylidene derivatives (Ia—e) were easily prepared by the reaction of methyl isocyanoacetate with cycloalkanones according to the method reported by Schöllkopf *et al.*⁵

Saponification of the cycloalkylidene derivatives (Ia—e) with potassium hydroxide in methanol at 50 °C proceeded

R
$$= \frac{[CH_2]_n}{[CH_2]_n}$$
 $= R + \frac{[CH_2]_n}{[CH_2]_n}$
 $= R + \frac{[CH_2]_n}{[II]}$
 $= R + \frac{[CH_2]_n}{[I$

easily giving high yields of the required N-formylcyclo-alk-1-enylglycines (IIa—e) as a result of migration of the $\alpha\beta$ -double bond to the $\beta\gamma$ -position. The structure of the resultant products (IIa—e) was confirmed by ¹H n.m.r. spectroscopy in (CD₃)₂SO: the α -methine proton (δ 4·7—5·0) was coupled with the NH proton and changed to singlet upon exchange with D₂O; the vinyl proton appeared at δ 5·6—5·8. Deformylation of (IIa—e) using hydrochloric

IADLE						
	(II)	(IV)			
Substrate	Yield (%)	M.p./°C (decomp.)	Yield (%)	M.p./°C (decomp.)	¹ Η 1 α-CH	n.m.r.ª Vinyl-CH
(Ia) (Ib) (Ic)	87 80 ^b 87 ^b	149—151 — —	90 55 49	232-234 $259-260$ $216-217$	$5.06 \\ 4.75 \\ 4.70$	6·20 6·20 6·15
(Id) (Ie)	90 79	$175 - 177 \ 144 - 145$	$\frac{92}{93}$	$237-238 \ 217-218$	$\frac{4.81}{4.78}$	$\begin{array}{c} 6 \cdot 35 \\ 6 \cdot 13 \end{array}$

TARIE

a δ values from Me₄Si internal standard for solutions in CF₂CO₂D. b (IIb) and (IIc) were obtained as mixtures with (IIIb) and (IIIc), respectively.

acid in tetrahydrofuran in the usual manner gave the corresponding cycloalk-1-enylglycines (IVa-e) in high yields (Table). In the case of (Ib) and (Ic), compounds (IIIb) and (IIIc), in which double bond migration had not taken place, were also formed (20-30% yields) in addition to (IIb) and (IIc), as shown by ¹H n.m.r. spectroscopy.

However, these by-products were easily separated as the keto acid derivatives⁶ (Vb) and (Vc) by acid hydrolysis.

We thank Drs. I. Chibata, M. Miyoshi, and K. Matsumoto for encouragement.

(Received, 5th December 1977; Com. 1236.)

¹ J. E. Baldwin, S. B. Haber, C. Hoskins, and L. I. Kruse, J. Org. Chem., 1977, 42, 1239, and references cited therein.

² R. Rands, Accounts Chem. Res., 1975, **8**, 281.

³ H. J. Christopher, B.P. 1,315,443 (1973) (Chem. Abs., 1973, **19**, 53308); T. Yamazaki and K. Tsuchiya, J. Antibiotics, 1976, **29**, 559.

⁴ T. Asako, T. Soma, H. Masuya, T. Harukawa, and T. Miki, Ger. Offen. 2,165,990 (1972) (Chem. Abs., 1972, **77**, 127,059).

⁵ U. Schöllkopf, F. Gerhart, R. Schröder, and D. Hoppe, Annalen, 1972, **766**, 116.

⁶ D. Hoppe, Angew. Chem. Internat. Edn., 1974, 13, 789.