ORIGINAL PAPER

Synthesis and Crystal Structure of New *N*,*N*'-Bis[1-(4-methoxyphenyl)-5-methyl-1*H*-1,2,3-triazole-4-carbonyl]hydrazide

Heng-Shan Dong · Yan-Fei Wang · Hong-Ru Dong · Bin Wang · Bin Quan

Received: 7 May 2007/Accepted: 7 May 2008/Published online: 25 June 2008 © Springer Science+Business Media, LLC 2008

Abstract The *N*,*N*'-bis[1-(4-methoxyphenyl)-5-methyl-1*H*-1,2,3-triazole-4-carbonyl]hydrazide **6** was synthesized from aryl triazole acids and its structure is established by MS, IR, and ¹H NMR spectral data. Compound **6**, $C_{22}H_{22}N_8O_4$, Mr = 462.48, crystallizes in the monoclinic space group P2(1)/c with unit cell parameters a = 15.3451(8), b = 8.6486(4), c = 16.8502(9) Å, α = 90.00, β = 95.731(2), γ = 90.00°, V = 2225.1(2) Å³, Z = 4, and Dx = 1.381 mg m⁻³. The final R was 0.0450. The four aromatic rings are close to linear because of N···H–N hydrogen bonds.

Keywords Crystal structure \cdot 1,2,3-triazole \cdot *N*,*N*'-Bis(1-aryl-5-methyl-1*H*-1,2,3-triazole-4carbonyl)hydrazide \cdot Hydrogen bond \cdot Crystal data

Introduction

In recent years, certain compounds having 1,2,3-triazole nucleus have been reported as antibacterial [1], antifungal [2], antiviral [3], anti-inflammatory, and analgesic [4]. Recently, some new 1,2,3-triazole derivatives have been synthesized to inhibit tumor proliferation, invasion and

H.-S. Dong (⊠) · Y.-F. Wang · B. Wang State Key Laboratory of Applied Organic Chemistry, Institute of

Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou, Gansu 730000, China e-mail: donghengshan@lzu.edu.cn

H.-R. Dong · B. Wang · B. Quan College of Science and Engineering, Gansu Association University, Lanzhou, Gansu 730000, China metastasis [5] and as anti-HIV agents [6, 7]. For this reason, the heterocyclic derivatives containing two 1,2,3-triazoles nuclei are very interesting. The route of syntheses is in Scheme 1.

Scheme 1 The synthesis route of title compound

Experimental

All melting points were determined on a Sapphire DSC (Differential Scanning Calorimeter) which is made by Perkin Elmer (USA). IR spectra were obtained in KBr discs on a Shimadzu IR-435 spectrometer. MS were performed on a HP-5988A spectrometer (EI at 70 eV). ¹H NMR spectroscopy (CDCl₃) was recorded on a Varian Mercury plus-300 instrument with TMS as an internal standard.

5-Methyl-1-(4-methoxyphenyl)-1,2,3-triazol-4-carboxylic acid **4** was prepared by following methods in the literature [8].

Preparation of 1-(4-Methoxyphenyl)-5-methyl-1,2,3triazol-4-carbonyl chloride **5**

In a 150 mL round bottomed flask was placed a mixture of 4 (20 mmol) and $SOCl_2$ (20 mL) and the mixture was refluxed gently for 5–8 h. After excessive $SOCl_2$ was distilled from the mixture, remaining $SOCl_2$ was removed, which was washed by absolute benzene (20 mL \times 2). The resulting solid was purified by recrystallization from Et₂O. The 1-(4-methoxyphenyl)-5-methyl-1,2,3-triazol-4-carbonyl chloride 5 was obtained.

N,N'-Bis(1-(4-methoxyphenyl)-5-methyl-1H-1,2,3-triazole-4-carbonyl)hydrazide **6** was Prepared From **5** as Follows

A solution of 10 mmol (85% hydrazine hydrate) in 10 mL of 20% NaOH was added drip to 1-(4-methoxyphenyl)-5-methyl-1,2,3-triazol-4-carbonyl chloride **5** and it was cooled with ice-water. Then, the solution of **5** (about 0.02 mol) and hydrazine hydrate was refluxed for 5 h with stirring. The reaction mixture was cooled and the resulting solid was purified by recrystallization from DMF to give white blocks of compound **6** yield 30.5%, m.p. 282.6 °C. ¹HNMR: 10.459 (s, 2H, -NHNH–), 7.526-7.556 (d, 4H, J = 8.7 Hz, Ar-2,6), 7.136–7.165 (d, 4H, J = 8.7 Hz, Ar-3,5), 3.842 (s, 6H, Ar–OCH₃), 2.507 (s, 6H, TRZ–CH₃). MS m/z: 514 (M⁺, FAB). IR: 3343, 3074, 2935, 2836, 1705, 1679, 1639, 1579, 1552, 1516, 1461, 1372, 1350, 1302, 1254, 1174, 1148, 1125, 1034, 1018, 1001, 981, 828, 771, 699, 646, 611, 530, 433.

The purified product was dissolved in DMSO. Crystals were obtained after 60 days by evaporation of the solvent.

A single crystal was selected and mounted on the tip of a glass fiber. Preliminary examination and data collection were performed with MoK α radiation ($\lambda = 0.71073$ Å) on a D8 Smart APEX II computer controlled APEX II detector diffractometer operating in the $\omega/2\theta$ scanning mode. The structure was determined by direct methods (SHELXS-97) and refined by full covariance matrix methods (SHELXL-97).

Table 1	Crystal	data a	nd sun	nmary of	data	collection	and	structure
refinemen	nt							

rennement	
Compound no.	6
CCDC deposition number	616414
Empirical formula	$C_{22}H_{22}N_8O_4$
Color/shape	Colorless/block
Formula weight	462.48
Temperature (K)	294(2)
Wavelength (Å)	0.71073
Crystal system	Monoclinic
Space group	P2 ₁ /c
Cell dimensions	
a (Å)	15.3451(8)
b (Å)	8.6486(4)
c (Å)	16.8502(9)
α (°)	90
β (°)	95.731(2)
γ (°)	90
Volume (Å ³)	2225.1(2)
Z	4
$D_{calc} (g cm^{-3})$	1.381
Absorption coefficient (mm ⁻¹)	0.100
Diffractometer/scan	Smart apex II
	CCD area detector $\omega/2\theta$
F(000)	968
θ range for data collection (°)	2.43~28.79
Index ranges	$-19 \leq h \leq 19$
	$-11 \le k \le 11$
	$-22 \le l \le 15$
Reflections collected	5251
Independent reflection	3784
Data/restrains/parameters	3015/0/312
Extinction coefficient	0.0030(12)
Goodness-of-fit on F^2	0.527
Final R indices $[I > 2\sigma(I)]$	
R indices	$R_1 = 0.0450, wR_2 = 0.1304$
	$R_1 = 0.1000, wR_2 = 0.1797$
Largest different peak and hole	0.225 and $-0.173\ e {\mbox{\AA}^{-3}}$

The crystal data and the refinement details are given in Table 1.

The structure of the compound 6 is shown in Fig. 1. Selected bond lengths are given in Table 2, selected bond angles are given in Table 3. The geometric calculations were performed using the program SHELX-97.

Results and Discussion

The new N,N'-bis(1-(4-methoxyphenyl)-5-methyl-1H-1,2, 3-triazole-4-carbonyl)hydrazide **6** has been synthesized

Fig. 1 ORTEP drawing of the compound 6 is showing the atom numbering scheme

from 1-(4-methoxyphenyl)-5-methyl-1,2,3-triazol-4-carboxylic acid 4. The structure of this compound was characterized with ¹HNMR, IR, and MS spectroscopy. IR absorption peaks of 6 at 3373, 3074 cm^{-1} are assigned to its NH and 1679, 1705 cm^{-1} is assigned to its -CO- group. The chemical shift of the triazole ring methyl group show in the range $\delta 2.507$ ppm in compound **6**. The chemical shift of the triazole ring Me-proton is in agreement with the values reported for triazole (typical chemical shift of the triazole ring Me-proton is at about $\delta 2.45$ ppm in the NMR spectra) by Ykman [9] and (typical chemical shift of the triazole ring Me-proton is at about $\delta 2.26-2.62$ ppm in the NMR spectra) (Dong [10]). The crystal structure of $\mathbf{6}$ agrees with the structure (Fig. 1). The 1,2,3-triazole ring system is planar. The bond lengths N1-N2 1.359(2) Å, N2-N3 1.302(2) Å, N7-N8 1.363(7) Å, N6-N7 1.307(2) Å are in agreement with the values reported for triazole, N1-N2 1.361(5) Å, N2-N3 1.295(5) Å, but the bond lengths of N4–N5 is 1.381(2) Å.

The dihedral angles between 4-methoxyphenyl rings and 1,2,3-triazole rings are 50.1–56.1°[N2–N1–C5–C4—53.0(3), C8–N1–C5–C4—125.0(2), C8–N1–C5–C6—56.1(3), N2–N1–C5–C6—125.9(2)°, C14–N8–C16–C17—127.2(2), N7–N8–C16–C17—50.1(3), C14–N8–C16–C21—55.4(3), N7–N8–C16–C21—127.3(2), C15–N1–C17–C22—134.1(3)°], the 4-methoxyphenyl ring and 1,2,3-triazole ring system is not planar [also see Fig. 1b, c].

The dihedral angles between N4–C11–C9–N3 is $-13.0(3)^\circ$, bond angles N4–C11–C9 113.73(16); N5–N4–H4 120.3; N4–N5–H5 119.5; N5–N4–H4 120.3; N3–C9–C11 122.87(16); C11–N4–H4 120.3° in ring A, all atom are close to a plane in the A ring system. And so is in ring B, all atoms are close to a plane in the B ring system. The intramolecular hydrogen bond is in the A and B ring system. The bond length of Donor-H···Acceptor is 2.41 Å, the bond angle is 106° [N(4)–H(4)···N(3)], and 2.32 Å, 108°

Atoms	Length
01–C1	1.429(3)
N8-C14	1.354(2)
N8–N7	1.363(2)
N8-C16	1.433(2)
N1–C8	1.357(2)
N1-N2	1.359(2)
N1-C5	1.438(2)
N6-N7	1.302(2)
N6-C13	1.361(3)
O3–C12	1.217(2)
N5-C12	1.348(2)
N5-N4	1.381(2)
C21–C20	1.377(3)
C21–C16	1.391(3)
C2–C7	1.383(3)
C2–C3	1.387(3)
C16–C17	1.378(3)
04–C19	1.364(2)
04–C22	1.418(3)
C11–O22	1.215(2)
C11–N4	1.355(2)
С11–С9	1.479(2)
N2-N3	1.307(2)
C12–C13	1.476(2)
C14–C13	1.380(2)
C14–C15	1.483(3)
N3-C9	1.358(2)
C20–C19	1.389(3)
C17–C18	1.388(3)
C19–C18	1.381(3)
C8–C9	1.377(2)
C8–C10	1.485(3)
С5–С4	1.380(3)
C5–C6	1.385(3)
C6–C7	1.382(2)
С3–С4	1.385(3)

 $[N(5)-H(5)\cdots N(6)]$. The structure of the compound **6** is shown in Scheme 2 and Fig. 1.

Table 2 Selected bond

lengths (Å)

The X-ray structure analysis indicated that the compound **6** consisted of two phenyl rings and two triazole ring. The four aromatic rings are approximately linear because the intramolecular hydrogen bond is in the A and B ring system. The most noticeable change is that the signals of imino protons appeared in δ 10.459 ppm (1-(4ethoxyphenyl)-5-methyl-1,2,3-triazol-4-carbonylhydrazine 4.450–4.720 [broad peak, 3H, –NHNH₂]) [8].

Table 3Selected bondangles (°)

Atoms	Angle
C2-O1-C1	117.29(16)
C14-N8-N7	111.15(14)
C14-N8-C16	130.92(15)
N7-N8-C16	117.89(14)
C8-N1-N2	111.54(14)
C8-N1-C5	129.84(15)
N2-N1-C5	118.59(15)
N7-N6-C13	108.91(15)
C12-N5-N4	120.97(17)
C20-C21-C16	119.48(18)
01-C2-C7	116.36(17)
01-C2-C3	123.75(18)
C7-C2-C3	119.88(17)
$C_{17} - C_{16} - C_{21}$	120.61(16)
$C_{17} - C_{16} - N_8$	118 80(16)
C21_C16_N8	120 53(16)
$C_{19} - 04 - C_{22}$	11774(17)
02_C11_N4	123 20(17)
02 - C11 - C9	123.20(17) 123.06(17)
N4-C11-C9	123.00(17) 113.73(16)
N3_N2_N1	10678(14)
-112 - 111	100.70(14) 124.31(17)
03-C12-N3	124.31(17) 122.01(17)
N5 C12 C13	122.91(17) 112.78(17)
NS-C12-C13	112.70(17) 102.42(15)
10-C14-C15	103.42(13) 124.17(15)
$C_{14} = C_{14} = C_{15}$	124.17(15) 122.40(16)
13 - 014 - 015	132.40(10) 108.06(15)
12-103-09	100.90(13) 120.22(19)
$C_{21} = C_{20} = C_{19}$	120.32(18) 110.52(18)
C10-C17-C18	119.52(10)
04 - C19 - C18	124.93(10) 115.24(17)
$C_{19} = C_{20}$	113.24(17) 110.20(17)
$C_{10} = C_{19} = C_{20}$	119.00(17) 100.22(15)
10-C13-C14	109.55(15) 101.22(16)
10-013-012	121.32(10) 120.20(17)
C14-C15-C12	129.29(17) 110.20(16)
11 - 104 - 103	102.00(15)
$11 - C_0 - C_9$	103.09(13)
1 - 0 = 0	123.81(10) 122.04(17)
19 - 10 - 10	132.94(17)
$N_3 = C_9 = C_8$	109.01(15)
N3-C9-C11	122.87(10)
C8-C9-C11	127.47(17)
C4-C5-C6	120.75(16)
C4-C5-N1	118.28(16)
C6-C5-NI	120.96(17)
NO-N/-NS	107.19(15)
C19-C18-C17	120.24(18)
C/-C6-C5	119.28(18)
C6-C7-C2	120.42(17)
C4-C3-C2	119.87(19)
C5-C4-C3	119.67(18)

Scheme 2 The hydrogen bonds of title compound

Acknowledgements The authors wish to acknowledge that this project is supported by Lanzhou University SKLAOC.

References

- Zhang ZY, Liu Y, Yang SY (1991) Pharmaceuceutica Simica 26:809
- 2. Abdou NA, Soliman SN, Abou Sier AH (1990) Bull Fac Pharm 28:29 (Chem Abstr 1992, 117, 69793n)
- Srivastava AJ, Swarup S, Saxena VK, Chowdhury BL (1991) J Indian Chem Soc 68:103
- 4. Cooper K, Steele J, Richardson K EP 329357 (Chem Abstr 1990, 112, 76957u)
- 5. Kohn EC, Liotta LA U.S. 637145 (Chem Abstr 1991, 115, 248099w)
- Alvarez R, Velazquez S, San-Felix A, Aquaro S, De Clercq E, Perno CF, Karlsson A, Balzarini J, Camarasa MJ (1994) J Med Chem 37:4185
- 7. De Clercq E (2002) Med Res Rev 22:531
- 8. Dong HS, Wang B (2005) J Chin Chem Soc (Taipei) 52:103-108
- 9. Ykman P, L'Abbé G, Smets G (1971) Tetrahedron 27:5623
- 10. Dong HS, Liu SQ (2003) J Chin Chem Soc (Taipei) 50:1215-1219