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Abstract: Diisobutylaluminium and bromomagnesium-2-vinyl-
oxy-ethoxide add at carbonyl compounds in the manner of (1,3-di-
oxolan-2-yl)methyl organometallics, giving the carbon-carbon ad-
dition products. It is assumed that the aluminium and magnesium
compounds of 2-vinyloxy-ethoxide are in equilibrium with the cor-
responding (1,3-dioxolan-2-yl)methide.

Key words: carbanion, intramolecular cyclization, metallation, or-
ganometallic reagent, rearrangement

Organometallic compounds, bearing a functional group at
the β-position, undergo facile β-elimination.1 This elimi-
nation is only prevented by generating the carbanion at
low temperature, with a very poor leaving group X at the
β-position, or in the case of a perpendicular arrangement
of lone electron pair and C-X bond. Earlier studies estab-
lished that the action of sodium on 2-bromomethyl-1,3-di-
oxolane (1) in ether proceeds according to Scheme 1.2

Similar results were obtained by Feugeas for the Grignard
reagent from 2-bromomethyl-2-methyl-1,3-dioxolane.
Refluxing in tetrahydrofuran yielded the corresponding β-
elimination compound as the sole reaction product.3 On
the other hand, there are a few examples in the literature
on  the  successful  addition  of  the  Grignard  reagent  of
2-bromomethyl-1,3-dioxolane (1) to carbonyl com-
pounds. Kibayashi et al. reported the generation of 3 by
addition of the organomagnesium compound of 1 to the
aldehyde group of a threo-configurated carbohydrate de-
rivative.4

Reagents and conditions: (i): Na, Et2O, 35 °C, H2O, 64%; (ii): Mg,
THF, r.t., RCHO, NH4Cl/H2O, 70% (100% de).

Scheme 1

In a preceding paper we described the preparation of the
Grignard reagent from (1) and magnesium and its reaction
with less reactive carbohydrate ketones in refluxing tet-
rahydrofuran. These uloses gave the corresponding
branched chain carbohydrate derivatives in good to excel-

lent yields (Scheme 2, path A).5 The discrepancy in both
findings caused us to approach the problem from the op-
posite side. Bromomagnesium-2-vinyloxy-ethoxide (4a),
the product of β-elimination from (1,3-dioxolan-2-yl)-
methylmagnesium bromide, was generated at room tem-
perature (Scheme 2, path B), by addition of ethylmagne-
sium bromide in tetrahydrofuran to a solution of 2-
vinyloxy-ethanol (2a) in tetrahydrofuran. The mixture
was allowed to warm to room temperature and then a so-
lution of ulose 6 in tetrahydrofuran was added. After re-
fluxing for four hours the reaction was quenched. 

Reagents and conditions: (i): Mg, 1.0 equiv, THF, r.t.; (ii): EtMgBr,
1.0 equiv, THF, r.t.; (iii):1,2;5,6-Di-O-isopropyliden-α- D-ribo-hexo-
furanos-3-ulose (6), 0.2 equiv, 4h, 65 °C, NH4Cl/H2O; A:64%,
B:67%.
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Reagents and conditions: (i): EtMgBr, 1.1 equiv, 0 °C, THF; (ii):
DIBALH, 1.1 equiv, 0 °C, THF; (iii): PhCHO, 2.0 equiv, 160 h, r.t.;
NH4Cl/H2O; (iv): PhCHO, 2.0 equiv, 4 h, 65 °C; NH4Cl/H2O.

Scheme 3
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Surprisingly, the magnesium alkoxide 4a gave the carbon-
carbon addition product of the Grignard reagent of 2-bro-
momethyl-1,3-dioxolane 5a in a comparable yield. This
unexpected result led to further examinations (Scheme 3),
concerning the nature of metal and substituents. These re-
actions were carried out with the highly reactive benzal-
dehyde instead of ulose 6.6,7 The data shown in the Table
indicate a strong enhancement of yield for the diisobutyl-
aluminium alkoxide. Furthermore, the reaction was ob-
served to be feasible even in the case of the substituted
alkoxides 4b-c.

Moreover, we observed the ketones 9a-c, generated by
mono addition of 4a-c to benzyl benzoate, as additional
products. A reasonable explanation for the generation of
the ester intermediate is given by the Tishenko reaction,
the alkoxide catalyzed disproportionation of aldehydes to
esters.8 We also attempted, unsuccessfully, to detect the
C-C addition products of the lithium, sodium or potassium
derivative of 4a, generated by deprotonation of 2a with n-
butyllithium, sodium hydride and potassium hydride.

Table  Influence of metal and substituents

In consideration of the resemblance to the corresponding
carba-analogous carbometallations, these results can be
explained by the mechanism, shown in Scheme 4. This in-
tramolecular rearrangement of an unsaturated alkoxide to
a carbanion corresponds to an alkoxymetallation. As a
strong support for such a supposed anionic mechanism,
Alexakis et al. already mentioned the cyclization of
alkoxyallene derivatives.9 Another description of these
findings is that the examined (1,3-dioxolan-2-yl)methyl
organometallics 5a-c are in equilibrium with their prod-
ucts of β-elimination (4a-c). From the mechanistic point
of view the assumed equilibrium may have some analo-
gies to the well-known 5-hexenyl system.10-13 However,
due to the strong O-M bond in the open-chain compo-
nents, the equilibria are expected to be far on the side of
the alkoxide compounds. 
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