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Abstract: The first enantioselective synthesis of the recently re-
ported ant alkaloid 1 has been achieved starting from commercially
available lactam 3 in seven steps and 25% overall yield. The pro-
posed structure of the natural product was confirmed by comparison
with synthetic 1 and its absolute configuration established as
3S,5R,8S,9S.
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The bicyclic indolizidine skeleton has been found in nat-
ural sources such as skin extracts of poison frogs,1 venoms
of ants,2 and many of these natural products showed in-
triguing biological activities.3 The stereoselective con-
struction of the substituted indolizidine ring system
remains a substantial challenge in organic chemistry.4

Very recently, five new alkaloids, along with six known
indolizidines and three known pyrrolidines, have been de-
tected in the extracts of the ant Myrmicaria melanogaster
from Brunei in the Indonesian archipelago.5 Although the
structures of two new indolizidine alkaloids (1 and 2,
Figure 1) were proposed on the basis of a nonstereoselec-
tive synthesis and GC-FTIR analysis of each stereoiso-
mer,5 no stereoselective synthesis of 1 has yet been
reported. As part of our ongoing program of devising syn-
theses of biologically active alkaloids,6 we report here the
first enantioselective synthesis of the above venom alka-
loid 1 starting from the commercially available lactam 3
in seven steps and 25% overall yield.

The lactam 3 was converted to the Cbz-imide 4 in high
yield, which was subjected to Martin’s transformation7 to
produce the 2,5-cis-disubstituted pyrrolidine 6 via the ke-

tone 5 in a highly diastereoselective manner. Treatment of
6 with DIBAL followed by addition of vinyl Grignard re-
agent to the resulting aldehyde provided the alcohol 7 as a
mixture of diastereomers. The cross-metathesis reaction
of 7 with 1-hexen-3-one in the presence of the Grubbs sec-
ond-generation catalyst8 in refluxing methylene chloride
afforded the homologated product 8. Exposure of 8 to hy-
drogenation in the presence of Pearlman’s catalyst fur-
nished the two indolizidines (–)-1 and 9. These
indolizidines were easily separated by column chroma-
tography to furnish (–)-19 as a major isomer and 910 as a
minor isomer in 62% and 19% isolated yields, respective-
ly. The stereochemistry of the synthetic major isomer
(–)-1 was determined by the NOE experiments indicated
in Scheme 1.

The stereochemical course of the addition of the vinyl an-
ion to the aldehyde intermediate from 6 can be explained
by the chelation control model as shown in Figure 2. The
use of excess Grignard reagent (3 equiv) resulted in the
formation not of the Felkin–Anh type of transition state
but rather a chelated transition state, where the anticipated
preference for b-attack of the vinyl anion would yield the
major isomer. In the chelated transition state, steric hin-
drance of the a-hydrogen at the 3-position of pyrrolidine
ring would also favor b-attack of the vinyl anion.

Figure 2 Stereochemical course of the addition of vinyl anion

We found that synthetic (–)-1 had a retention time (tR) and
mass spectrum identical with the natural product from the
Myrmicaria melanogaster ant as well as the first eluting
isomer (±)-1 of the mixture of four components [(±)-1 and

Figure 1
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three (±)-diastereomers] synthesized earlier in a nonenan-
tioselective manner by Jones et al.5 The absolute configu-
ration of the natural product was shown identical to that of
(–)-1 by the correspondence of its tR after co-injection
with (±)-1 from Jones’ synthetic mixture and the crude ant
extract using a chiral permethylated b-cyclodextrin col-
umn.11 Thus the natural product has the same absolute
configuration as (–)-1, that is, 3S,5R,8S,9S. This is the
same configuration at C-3, C-5, and C-9 as the recently
synthesized natural (–)-monomorine from ants.12

In summary, we achieved the first enantioselective syn-
thesis of the new ant alkaloid, 3-butyl-5-propyl-8-hy-
droxyindolizidine, starting from lactam 3 in seven steps,
and the absolute configuration as well as the proposed rel-
ative structure of the natural ant alkaloid was confirmed
by comparison with synthetic (–)-1. The relative configu-
ration reported5 for the hydroxyindolizidine as structure
10a was arbitrarily depicted but fortuitously shows the
correct absolute configuration as this work indicates.
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