Cite this: Chem. Commun., 2011, 47, 2006–2007

COMMUNICATION

The frustrated Lewis pair induced formation of a pentafulvene [6 + 4] cycloaddition product[†]

Cornelia M. Mömming, Gerald Kehr, Roland Fröhlich‡ and Gerhard Erker*

Received 22nd October 2010, Accepted 14th December 2010 DOI: 10.1039/c0cc04567e

The frustrated Lewis pair $Mes_2P-CH_2CH_2-B(C_6F_5)_2$ reacts with excess 6,6-dimethylpentafulvene to yield a P/B-Lewis pair addition product to an elusive pentafulvene [6 + 4] cycloaddition dimer. This observation may open a new field of utilization of frustrated Lewis pair chemistry.

[m + n] Cycloaddition reactions are of great synthetic importance. Their detailed study has significantly contributed to the understanding of mechanistic routes taken in organic transformations.¹ The most frequently employed reaction of this type is the [4 + 2] cycloaddition, *i.e.* the Diels–Alderreaction and its variants. Higher order cycloadditions such as the [6 + 4] or [8 + 2] cycloaddition have been studied² and in some cases utilized,³ but to a much lesser extent than many of their lower congeners.

Fulvenes should be prime candidates for *e.g.* [6 + 4] cycloaddition reactions, but they mostly react by the preferred [4 + 2] reaction alternative.⁴ The much more reactive isobenzofulvene **1**, however, undergoes rapid dimerization to form the respective [6 + 4] cycloaddition product **2**.⁵ To the best of our knowledge, information about the [6 + 4] dimerization of simple pentafulvenes is scarce. Neuenschwander suggested the potential occurrence of a [6 + 4] intermediate **4** in the trimerization reaction of 6,6-dimethylfulvene **3** (Scheme 1). We have now found a unique way to generate the framework of the 6,6-dimethylpentafulvene [6 + 4] dimer with the aid of frustrated Lewis pair chemistry.

Frustrated Lewis pairs have been known to undergo a number of small molecule activation reactions.⁶ We had shown that the P(*o*-tolyl)₃/B(C₆F₅)₃ Lewis pair can add to non-conjugated di-acetylenes to induce additional carbon–carbon coupling.⁷ The very reactive intramolecular Lewis pair 5^8 undergoes 1,2-addition reactions to olefins or acetylenes⁹ but also is able to undergo 1,4-addition reactions to conjugated enynes and diynes.¹⁰

Scheme 1 Dimerization reactions of fulvene derivatives.

When the intramolecular frustrated Lewis pair 5 was stirred with a ca. 10 fold excess of 6,6-dimethylfulvene 3 in pentane at room temperature a slow reaction occurred to give a colorless precipitate. It was collected after a total of 7 days reaction time and isolated in 43% yield as an off-white solid. Single crystals suited for the X-ray crystal structure analysis were obtained from benzene/heptane by the diffusion method. It showed that we had isolated the formal addition product (6) to the endo-[6 + 4] dimer (4) of 6.6-dimethylpentafulvene 3 (see Fig. 1 and Scheme 2). The core of the structure contains the tricyclic ring system formally derived from the pentafulvene [6 + 4] dimerization. It features a bridgehead C=C double bond (C7-C8: 1.318(4) Å), the endocyclic C3-C4 double bond (1.313(5) Å) and the exocyclic C=CMe₂ bond (C11-C12: 1.319(4) Å). The $(C_6F_5)_2B$ -CH₂-CH₂-PMes₂ system 5 is found 1,2-attached at the five-membered ring (C9-P: 1.882(3) Å, C10–B: 1.651(4) Å). The resulting P/B containing heterocycle attains a rigid boat conformation (see Fig. 1). The overall structure can formally be described as the regioselective exo-1,2-addition product of the P/B Lewis pair 5 to the C9=C10 carbon-carbon double bond of the *endo*-[6 + 4]dimer of 6,6-dimethylfulvene.

In solution we have also found a single diastereoisomer of **6**. It shows the ¹H NMR signals of two pairs of methyl groups (C12–CH₃/CH₃'; δ 1.48/1.03) and three olefinic CH signals (8-H: δ 4.65; 3-H/4-H; δ 5.91/5.98). There is a phosphonium type ³¹P NMR resonance at δ 33.2 and a borate ¹¹B NMR signal at δ –14. Due to the chirality of the framework the

Organisch-Chemisches Institut der Universität Münster,

Corrensstrasse 40, 48149 Münster, Germany.

E-mail: erker@uni-muenster.de; Fax: +49 251-83 36503

[†] Electronic supplementary information (ESI) available: Additional experimental and spectroscopic data. CCDC 798300. For ESI and crystallographic data in CIF or other electronic format see DOI: 10.1039/c0cc04567e

[‡] X-Ray crystal structure analyses.

Fig. 1 Two projections of compound **6** (the lower one only contains the core atoms for clarity).

Scheme 2 Synthesis of compounds 6 and 7.

mesityl groups at P and the C_6F_5 substituents at B are pairwise diastereotopic. Moreover, at 253 K the rotation of both the P-mesityl and B- C_6F_5 groups is frozen on the NMR time scale, so that all their core atoms feature separate individual NMR signals. Thus, we observe a total of 10 well resolved ¹⁹F NMR resonances of the adduct **6** (four *ortho*, two *para* and four *meta* ¹⁹F NMR signals).

Heating of the adduct **6** in d_6 -benzene solution at 85 °C (6 h) resulted in a cleavage of the P/B Lewis pair from the organic framework. Admixed with some pentane, from which it was hard to separate due to its marked volatility, we isolated a hydrocarbon product in low yield (*ca.* 35%) which we

tentatively assign the structure of the 6,6-dimethylfulvene [6 + 4] dimer isomer 7. This is likely formed from the dimer 4 by means of a rapidly proceeding thermally induced 1,5-hydrogen migration inside the cyclopentadiene moiety of the dimer framework. Compound 7 features a total of four olefinic ¹H NMR signals at δ 6.13 (3-H), 6.02 (4-H), 5.96 (8-H), and 5.76 (10-H). Then there are the ¹H/¹³C NMR signals of four CH₃ substituents. The 9-H/H' resonances were found at δ 2.69/2.68.

The mechanism of the formation of the formal frustrated Lewis pair adduct **6** of the 6,6-dimethylpentafulvene [6 + 4]dimer still needs to be elucidated. It is well conceivable that the formation of the dimeric framework might have been induced by the strong boron Lewis acid part of **5**, following a cationic reaction sequence with an eventual cooperative trapping by the intramolecular phosphorus Lewis base. Alternatively, it is conceivable that the frustrated P/B Lewis pair has effectively added to the fulvene dimer **4** from an unfavorable dimer/ monomer equilibrium situation.¹¹ Whatever the detailed mechanism might be, the remarkable formation of product **6** from the Lewis pair **5** and 6,6-dimethylfulvene, indicates that frustrated Lewis pair chemistry might actually have a much wider implication and application potential than previously thought.

Financial support by the Deutsche Forschungsgemeinschaft is gratefully acknowledged.

Notes and references

- R. B. Woodward and R. Hoffmann, *Angew. Chem., Int. Ed. Engl.*, 1969, 8, 781 (*Angew. Chem.*, 1969, 81, 797) and references cited thereinK. N. Houk, *Acc. Chem. Res.*, 1975, 8, 361.
- K. N. Houk and R. Woodward, J. Am. Chem. Soc., 1970, 92, 4145;
 R. W. Alder, J. N. Harvey, G. C. Lloyd-Jones and J. M. Oliva, J. Am. Chem. Soc., 2010, 132, 8325.
- 3 Review: J. H. Rigby, Org. React. (Hoboken, NJ, U.S.), 1997, 49, 331.
- 4 B. Uebersax and M. Neuenschwander, *Chimia*, 1981, **35**, 400 and references cited therein.
- H. Tanida, T. Irie and K. Tori, *Bull. Chem. Soc. Jpn.*, 1972, 45, 1999;
 M. N. Paddon-Row, P. L. Watson and R. N. Warrener, *Tetrahedron Lett.*, 1973, 14, 1033;
 M. N. Paddon-Row, K. Gell and R. N. Warrener, *Tetrahedron Lett.*, 1975, 16, 1975;
 B. M. Gatehouse, P. Leverett and D. Taylor, *Aust. J. Chem.*, 1979, 32, 211–216;
 R. N. Warrener, M. N. Paddon-Row, R. A. Russell and P. L. Watson, *Aust. J. Chem.*, 1981, 34, 397;
 R. N. Warrener, M. L. A. Hammond and D. N. Butler, *Synth. Commun.*, 2001, 31, 1167.
- 6 D. W. Stephan and G. Erker, Angew. Chem., Int. Ed., 2010, 49, 46 (Angew. Chem., 2010, 122, 50).
- 7 C. Chen, R. Fröhlich, G. Kehr and G. Erker, *Chem. Commun.*, 2010, 46, 3580.
- 8 P. Spies, G. Erker, G. Kehr, K. Bergander, R. Fröhlich, S. Grimme and D. W. Stephan, *Chem. Commun.*, 2007, 5072; P. Spies, S. Schwendemann, S. Lange, G. Kehr, R. Fröhlich and G. Erker, *Angew. Chem., Int. Ed.*, 2008, **47**, 7543 (*Angew. Chem.*, 2008, **120**, 7654).
- 9 C. M. Mömming, S. Frömel, G. Kehr, R. Fröhlich, S. Grimme and G. Erker, J. Am. Chem. Soc., 2009, 131, 12280.
- 10 C. M. Mömming, G. Kehr, B. Wibbeling, R. Fröhlich, B. Schirmer, S. Grimme and G. Erker, *Angew. Chem., Int. Ed.*, 2010, **49**, 2414 (*Angew. Chem.*, 2010, **122**, 2464).
- 11 Secondary orbital interactions should favor the formation of the exo-[6 + 4] fulvene dimer. However, the *endo*-[6 + 4] product is found to be the major product observed in the *iso*-benzofulvene dimerization reaction (see ref. 5).