

Synthesis and binding-analysis of 5E-[19-(2-bromoacetoxy)methyl]25hydroxyvitamin D₃ and 5E-25hydroxyvitamin D₃-19-methyl[(4-azido-2-nitro)phenyl]glycinate: Novel C₁₉modified affinity and photoaffinity analogs of 25-hydroxyvitamin D₃

James K. Addo* and Rahul Ray†

*†Bioorganic Chemistry and Structural Biology Group, Vitamin D Laboratory, Departments of Medicine and Physiology, Boston University School of Medicine, Boston, Massachusetts 02218 USA and *Department of Chemistry, Boston University, Boston, Massachusetts, 02215 USA*

Synthesis of novel C_{19} -modified affinity and photoaffinity analogs of vitamin D_3 and 25-hydroxyvitamin $D_3(25-OH-D_3)$ is described. A key step in the synthesis is a Horner–Emmons reaction between C_{19} -nor-cyclovitamin D_3-C_{19} -ketone or C_{19} -nor-25-hydroxy-cyclovitamin D_3-C_{19} -ketone and diethyl cyanomethylphosphonate. Competitive radioligand binding assays with human serum vitamin D-binding protein (DBP) and 5E-[19-(2-bromoacetoxy)methyl]25-hydroxyvitamin D_3 and 5E-25-hydroxyvitamin D_3 -19-methyl[(4-azido-2-nitro)phenyl]-glycinate, 25-OH- D_3 -analogs containing affinity and photoaffinity probes at C_{19} -position, demonstrated that these compounds displaced radiolabeled 25-OH- D_3 from the binding pocket of DBP in a dose-dependent manner. Thus, these affinity and photoaffinity analogs are potentially useful in determining the ligand binding site topographies of DBP and possibly the vitamin D receptor. (Steroids **63**:218–223, 1998) © 1998 by Elsevier Science Inc.

Keywords: affinity and photoaffinity analogs of vitamin D_3 and 25-hydroxyvitamin D_3 ; vitamin D-binding protein; vitamin D receptor; binding site mapping

Introduction

Research in the chemistry and biology of vitamin D_3 is currently being pursued vigorously by the revelations that 1α ,25(OH)₂D₃ is involved in several cellular processes, including gene regulation, cell differentiation, immune regulation, and calcium homeostasis.¹ This has further been heightened by the observation that 1α ,25(OH)₂D₃ and several of its synthetic analogs have the potential in the intervention and treatment of several disease states, including osteoporosis, psoriasis, renal osteodystrophy, leukemia, and cancer of various organs.^{2,3} It is well understood that these properties of 1α ,25(OH)₂D₃ are manifested by its highly specific interaction with a nuclear receptor (vitamin D₃ receptor, VDR) in the target cell.^{4,5} Identification of the three-dimensional structure of this receptor, particularly its ligand-binding pocket, is a necessary step in the development of analogs useful for the rational design of more potent 1α ,25(OH)₂D₃-based therapeutic agents.

The development of new affinity and photoaffinity analogs are of continuing importance in the vitamin D field because they are required for the characterization of the three-dimensional structure of the ligand-binding site of VDR, particularly in the absence of its crystal structure.⁶ In the past, we and others have developed affinity and photoaffinity analogs of 25-hydroxyvitamin D₃ [25-OH-D₃, the biological precursor of 1α ,25(OH)₂D₃], and successfully labeled the vitamin D₃ sterol-binding domains of vitamin D-binding protein, DBP, a serum receptor/transporter protein for vitamin D₃ and its metabolites,⁷⁻¹⁴ and VDR.¹⁵⁻²¹ These affinity and photoaffinity analogs contain labeling probes at C₃-position of the parent steroid,⁷⁻²¹ except in

Address correspondence to Rahul Ray, Boston University School of Medicine, 80 East Concord Street, Boston, MA 02118. E-mail: bapi@bu.edu Received July 9, 1997; accepted January 20, 1998.

 1α ,25-dihydroxyvitamin D₃-1-bromoacetate, where the affinity probe is attached at the C₁-position of the parent steroid.¹⁴ In addition, we have recently developed a methodology for synthesizing affinity- and photoaffinity-labeling analogs of vitamin D₃ containing the affinity/photoaffinity probes at the C₆-position of vitamin D₃.²²

In this paper, we report the synthesis of C_{19} -derivatized affinity and photoaffinity analogs of 25-OH-D₃ [(17) and (18), respectively] and results of the competitive binding analysis of these compounds with human serum DBP.²³ These compounds are potentially important in mapping the ligand-binding sites of DBP and VDR, the key proteins in the vitamin D endocrine system, which are responsible for the metabolic activation and physiological manifestations of 1α ,25(OH)₂D₃, the vitamin D hormone.

Experimental

All the chemicals were purchased from Aldrich Chemical Co. (Milwaukee, WI) unless mentioned otherwise. NMR spectra were taken in CDCl₃ using tetramethylsilane (TMS) as internal standard on either a 270 MHz (JEOL GSX 270, JEOL USA, Peabody, MA) or a 400 MHz (JEOL GSX 400) NMR spectrometer. Human DBP was from Calbiochem (San Diego, CA). 25-Hydroxy[26(27)-³H]vitamin D₃ (³H-25-OH-D₃), specific activity 20.6 Ci/mmol was purchased from New England Nuclear (Boston, MA). 25-OH-D₃ was a kind gift from Drs. Richard Gray and James Yager, Amoco Research Co., Naperville, IL. In general, all the operations involving compounds containing azido-nitrophenyl group were carried out in the dark.

6R-Methoxy-19-Nor-10-keto 3,5-cyclovitamin D₃ (5). This compound was synthesized by a modification of the published procedure.²⁴ A mixture of 6*R*-methoxy-3,5-cyclo-cholecalciferol (3), (500 mg, 1.25 mmol), 4-methylmorpholine-N-oxide, (415 mg, mmol, 0.7 eq.) and OsO₄ (150 mg, mmol, eq.) in tetrahydrofuran (THF) (10 mL), t-butanol (10 mL) and H₂O (5 mL) was stirred at room temperature for 2 h. Saturated aqueous NaHSO₃ (5 m L) was added, and the mixture extracted with EtOAC (3 \times 10 mL). The organic phase was separated, dried over anhydrous MgSO₄, filtered, and concentrated to dryness to give an oily residue. The oil (710 mg) was dissolved in methanol (15 mL) and H₂O (7 mL), and NaIO₄ (800 mg, 3.75 mmol) was added. The mixture was stirred at room temperature for 2 h and after evaporation to dryness, H₂O and EtOAC were added. The organic phase was separated from the aqueous phase and washed with brine. The organic phase was separated, dried over anhydrous MgSO₄, filtered, and concentrated to dryness to give an oily residue. The residue was purified by column chromatography (5% EtOAc/hexane) to give (428 mg, 85% yield) of 19-nor-10-oxo-6R-methoxy-3,5-cyclovitamin D₃ (5). The corresponding 25-OH-D₃ compound (6) was also obtained by the same procedure in high yield. NMR spectra of $(5)^{24}$ and $(\mathbf{6})^{25}$ were consistent with the published ones.

10*E* and **10**-*Z*-**6***R*-methoxy-**19**-cyano-**3**,**5**-cyclovitamin **D**₃ (7a and 7b). To a stirred suspension of NaH (4.46 mg, 0.186 mmol, 3 eq.) in 5 mL of anhydrous 1,1-dimethoxyethane (DME) was added (30.1 μ L, 0.186 mmol, 1 eq.) of diethylcyanomethylphosphonate, and the mixture stirred at room temperature for 15 min, followed by the addition of C₁₉-nor-3,5-cyclovitamin D₃-C₁₉-ketone (**5**) (25 mg, 0.06 mmol) in DME (5 mL). The reaction mixture was stirred at room temperature for 12 h followed by the addition of 5 mL of water and extraction with EtOAc (3 × 5 mL). The organic phase was washed with brine, dried over anhydrous MgSO₄, filtered and concentrated. The residue was purified by

preparative thin-layer chromatrography (TLC) (5% EtOAc/Hexane) to give (19.27 mg) of the *E* isomer (**7a**) and (1.93 mg) of the *Z* isomer (**7b**) (80% combined yield) as an oil. *E*-isomer (**7a**): ¹H NMR (CDCl₃): δ 0.54 (3H, s, C₁₈-H), 0.868 and 0.870 (6H, d, C_{26,27}-H), 0.92 (3H, d, C₂₁-H), 1.06–2.88 (m), 3.25 (3H, s, OMe), 3.97 (1H, d, C₆-H), 4.96 (1H, d, C₇-H), 5.56 (1H, s, C₁₉-H). *Z*-isomer (**7b**): δ 0.49 (3H, s, C₁₈-H), 0.84 and 0.86 (6H, d, C_{26,27}-H), 0.91 (3H, d, C₂₁-H), 1.05–2.81 (m), 3.24 (3H, s, OMe), 3.98 (1H, d, C₆-H), 4.97 (1H, d, C₇-H), 5.58 (1H, s, C₁₉-H). The *E*, *Z* stereochemistry was proved by an NOE between C₇-H and C₁₉-H.

In a similar manner, 18.14 mg and 2.27 mg were respectively obtained for 10-*E* and 10-*Z*-25-hydroxy-19-cyano-6*R*-methoxy-3,5-cyclovitamin D₃ (**8a**) and (**8b**) in a combined yield of 75% using NaH (4.31 mg, 0.179 mmol, 3.0 eq.), diethyl cyanomethylphosphonate (28.97 μ L, 0.179 mmol, 3 eq), and 19-nor-10-oxo-25-hydroxy-6*R*-methoxy-3,5-cyclovitamin D₃ (**6**) (25 mg, 0.0598 mmol). In general, NMR spectra of all the 25-OH-D₃-derivatives were very similar to those of the corresponding vitamin D₃ compounds, except in the aliphatic region, where vitamin D₃ compounds produced a 6H doublet at approximately δ 0.9, and the corresponding 25-OH-D₃ compounds had two singlets (each 3H) centered at approximately δ 0.95.

10E-19-formyl-6R-methoxy-3,5-cyclovitamin D₃ (9). To a solution of (7a) (61 mg, 0.143 mmol) in 1 mL of toluene at -60° C was added a 1 M solution of DIBAL in toluene (35 µL, 0.215 mmol, 1.5 eq.), and the reaction mixture was allowed to warm slowly to -20° C. After 30 min of stirring at -20° C, the mixture was quenched with 2 mL of 10% HCl. The product was extracted with EtOAC (3×5 mL), and the combined organic phase was washed with brine, dried over anhydrous MgSO₄, and evaporated in vacuo. The residue was purified by preparative TLC (5% EtOAC/hexane) to give 37.10 mg of (9) (60% yield). ¹H NMR: δ 0.56 (3H, s, C18-H), 0.866 and 0.87 (6H, d, C26,27-H), 0.93 (3H, d, C21-H), 1.05–2.65 (m), 3.26 (3H, s, OMe), 4.25 (1H, d, C₆-H), 4.84 (1H, d, C7-H), 6.25 (1H, d, C19-H), 9.86 (1H, d, CHO). In a similar manner,10E-25-hydroxy-19-formyl-6R-methoxy-3,5-cyclovitamin D₃ (10) (19.24 mg, 64% yield) was obtained from 10E-25hydroxy-19-cyano-6*R*-methoxy-3,5-vitamin D₃ (8a) (30 mg).

10E-19-hydroxymethyl-6*R*-methoxy-3,5-cyclovitamin D₃ (11). A mixture of NaBH₄ (1.07 mg, 0.028 mmol, 1.2 eq.) in methanol (1 mL) at 0°C was treated dropwise with a solution of (9) (10 mg, 0.025 mmol) in methanol (1 mL). The resulting mixture was stirred at 0°C for 30 min, and 5 mL of saturated NH₄Cl was added. The reaction mixture was then extracted with EtOAC (3×5 mL). The combined organic layer was washed with water and brine, dried over anhydrous MgSO₄, and evaporated in vacuo. The residue was purified by preparative TLC (5% EtOAC/hexane) to give 5.53 mg. of (11) (55% yield). ¹H NMR: δ 0.49 (3H, s, C₁₈-H), 0.81(6H, d, C_{26,27}-H), 0 88 (3H, d, C₂₁-H), 1.04–2.01 (m), 3.19 (3H, s, OMe), 4.04 (1H, d, C₆-H), 4.19 (2H, d, OCH₂), 4.89 (1H, d, C₇-H), 5.71 (1H, t, C₁₉-H). In a similar manner, 10E-25-hydroxy-19-hydroxymethyl-6R-methoxy-3,5-cyclovitamin D₃ (12) (5.02 mg, 50% yield) was obtained from 10E-25-hydroxy-19-formyl-6*R*-methoxy-3,5-cyclovitamin D₃ (10) (10 mg, 0.023 mmol).

10E-19-[(2-bromoacetoxy)methyl]-6R-methoxy-3,5-cyclovitamin D₃ (13). A mixture of (11) (20 mg, 0.05 mmol), BrCH₂CO₂H (19.50 mg, 0.14 mmol, 3 eq.), DCC (48 mg, 0.23 mmol, 5 eq.) and DMAP (8.53 mg, 0.07 mmol, 1.5 eq.) was stirred in 1 mL of anhydrous CH₂Cl₂ at room temperature for 15 min, after addition of 5 ml H₂O to quench the reaction, 10 mL of EtOAC was added. The organic layer was separated from the aqueous phase, dried with anhydrous MgSO₄, and concentrated in

Papers

vacuo. The residue was purified by preparative TLC (5% EtOAC/ hexane) to give (18.45 mg, 72% yield) of 10*E*-19-(2-bromoacetoxy)methyl-6*R*-methoxy-3,5-cyclovitamin D₃ (**13**). ¹H NMR: δ 0.50 (3H, s, C₁₈-H), 0.81 (6H, d, C_{26,27}-H), 0.89 (3H, d, C₂₁-H), 1.03–2.01 (m), 2.54 (m), 3.21 (3H, s, OMe), 3.82 (2H, s, CH₂Br), 4.18 (2H, d, C₆-H), 4.59–4.81 (2H, m, OCH₂), 4.95 (1H, d, C₇-H), 5.73 (1H, t, C₁₉-H). In a similar manner, 10*E*-25-hydroxy-19-(2-bromoacetoxy)methyl-6*R*-methoxy-3,5-

cyclovitamin D_3 (14). (7.12 mg, 70% yield) was obtained from 10E-25-hydroxy-19-(hydroxymethyl)-6*R*-meth-

oxy-3,5-cyclovitamin D_3 (12) (8 mg, 0.02 mmol), BrCH₂CO₂H (7.49 mg, 0.05 mmol, 3 eq.), DCC (18.56 mg, 0.09 mmol, 5 eq.), and DMAP (3.297 mg, 0.027 mmol, 1.5 eq.).

5E[19-(2-Bromoacetoxy)methyl]vitamin D_3 (16). A mixture of (13) (10 mg, 0.018 mmol) and p-TsOH.H₂O (1.38 mg, 0.07 mmol, 0.4 eq.) in 1 mL of a 3:1 mixture 1,4-dioxane:H₂O was heated for 15 min at 55°C. After cooling to room temperature, 5 mL of EtOAC was added and the mixture washed with 2 mL of saturated aqueous NaHCO₃ solution. The organic phase was separated and dried with anhydrous MgSO₄ and evaporated in vacuo. Preparative TLC (25% EtOAC/hexane) of the residue gave (4.59 mg, 48.70% yield) of compound (16).

In a similar manner, 5*E*-[19-(2-bromoacetoxy)methyl] 25hydroxyvitamin D₃ (**17**) (2.13 mg, 45% yield) was obtained from 10*E*-25-hydroxy-19-(2-bromoacetoxy)methyl-6*R*-methoxy-3,5cyclovitamin D₃ (**14**) (5 mg, 0.008 mmol) and p-TsOH.H₂O (0.67 mg, 0.004 mmol, 0.40 eq.). ¹H NMR of (**17**) (400 MHz, in CDCl₃: δ 0.56 (3H, s, C₁₈-H), 0.95 and 0.96 (6H, two singlets, C_{26,27}-Hs), 1.01–2.82 (m), 3.81 (2H, s, CH₂Br), 3.99 (1H, m, C₃-H), 4.90 (2H, d, CH₂OCO), 5.43 (1H, t, C₁₉-H), 5.84 (1H, d, C₇-H), 6.22 (1H, d, C₆-H).

10E-6R-methoxy-25-hydroxy-3,5-cyclovitamin D₃-19-methyl-[(4-azido-2-nitro)phenyl]glycinate (15). A mixture of (12) (10 mg, 0.02 mmol), 4-azido-2-nitrophenylglycine¹⁶ (15.93 mg, 0.067 mmol, 3 eq.), DCC (23 mg, 0.112 mmol, 5 eq.), and DMAP (4.09 mg, 0.033 mmol, 1.5 eq.) was stirred in 1 mL of anhydrous CH₂Cl₂ at room temperature for 30 min in the dark. The reaction was quenched with 5 mL of H₂O, and the mixture was evaporated with EtOAC (3 \times 5 mL), filtered, dried with anhydrous MgSO₄, and concentrated in vacuo. The residue was purified by preparative TLC (25% EtOAC/hexane) to give 6.5 mg (79% yield) of 10E-6R-methoxy-25-hydroxy-3,5-cyclovitamin D₃-19-methyl[(4-azido-2-nitro)phenyl]glycinate (15). ¹H NMR: δ 0.48 (3H, s, C₁₈-H), 0.91-0.92 (6H, two singlets, C_{26,27}-H), 0.88 (3H, d, C₂₁-H), 1.01-2.03 (m), 3.22 (3H, s, OMe), 3.81 (2H, s, CH₂Br), 4.16 (3H, m, C₆-H and -NCH₂), 4.61 and 4.62 (2H, dd, OCH₂), 4.95 (1H, d, C₇-H), 5.71 (1H, t, C₁₉-H), 6.71 (1H, d, C₅-phenyl), 7.12 (1H, d, C₆-phenyl), 7.89 (1H, C₃-phenyl), and 8.34 (1H, t, NH).

25-hydroxyvitamin D_3 -19-methyl[(4-azido-2-nitro)phenyl]glycinate (18). To a solution of 10*E*-6*R*-methoxy-25-hydroxy-3,5cyclovitamin D_3 -19-methyl[(4-azido-2-nitro)phenyl]glycinate (15) (5 mg, 0.008 mmol) in 1 mL of 3:1 mixture of 1,4-dioxane-H₂O, was added p-TsOH.H₂O (0.57 mg, 0.003 mmol, 0.4 eq.), and the solution was stirred at room temperature for 30 min in the dark. After cooling to room temperature, EtOAc (3 × 5 mL) was added to extract the organic layer. The organic layer was separated from the aqueous layer, filtered, dried with anhydrous MgSO₄, and evaporated in vacuo. Preparative TLC (40% EtOAC/Hexane) of the crude extract gave 2.34 mg, 48% yield of (18). ¹H NMR: δ 0.51 (3H, s, C₁₈-H), 0.89 and 0.91 (6H, two singlets, C_{26,27}-H), 1.02–2.81 (m), 3.98 (1H, m, C₃-H), 4.07 (2H, d, CH₂O₂C), 4.84 (2H, d, NHCH₂CO₂), 5.45 (1H, t, C₁₉-H), 5.89 (1H, d, C₇-H), 6.23 (1H, d, C₆-H), 6.70 (1H, d, C₅-phenyl H), 7.14 (1H, d, C₆-phenyl H), 7.98 (1H, d, C₃-phenyl H), 8.34 (1H, t, NH).

Competitive radioligand binding assays of 25-OH-D₃, (17) and (18) with human serum DBP. These assays were carried out according to published procedure.¹³ In general, samples of DBP (200 ng), ³H-25-OH-D₃ (3,500 cpm in 10 μ L of ethanol) and various concentrations of either 25-OH-D₃ or (17) or (18) (1 pmol–63.8 pmol) were incubated in a buffer (50 mM Tris.HCl, 150 mM NaCl, 1.5 mM EDTA, 0.1% Triton X-100, pH 8.3, total volume 0.5 mL) at 4°C for 20 h, followed by the incubation with of ice-cold slurry of Dextran-coated charcoal,¹³ centrifugation and radioactive counting.

Results and discussion

Development of affinity/photoaffinity analogs require, as a general rule, synthesis of corresponding radiolabeled analog in a few short steps using a commercially available radioactive precursor of high specific activity.²⁶ Faced with these restrictions, synthesis of C₁₉-modified affinity/photoaffinity reagents by the procedure of Yamada et al., involving base-catalyzed functionalization of the sulfur-diooxide adduct of vitamin D₃,²⁷ deemed completely impractical.

In 1983, Paaren et al. reported the oxidation of C_{10-19} methylene of 25-hydroxy 3,5-cyclovitamin D₃ to its C₁₉nor-C19-keto derivative.25 This information provided us with a starting point to elaborate the C_{19} -position of vitamin D molecule. We first set out to do model studies using vitamin D₃ due to the prohibitive cost of 25-OH-D₃. Cyclovitamin D_3 Ketone (5) was prepared in an improved yield of 85% from 6*R*-methoxy-3,5-cyclovitamin D_3 (3) by a modification of the of the published procedure.²³ We examined the reaction of this ketone using a variety of Wittig or Horner-Emmons reagents (Figure 1). In our hands, only diethylcyanomethylphosphonate [(EtO)₂POCH₂CN] gave a fruitful Horner-Emmons reaction with this ketone using DME as the solvent, to give a 10:1 mixture of the E and Z-isomers (7a) and (7b) separable by preparative TLC in a combined yield of 80%.24 The following Wittig or Horner-Emmons reagents did not give any fruitful reaction with (OCH_2CH_2O) Br⁻, Ph₃P⁺-CH₂CH- (OCH_2CH_2O) Br⁻, (EtO)₂POCN, (EtO)₂POCH₂=CH₂CO₂Et. Also, the reaction with (EtO)₂POCH₂CN does not occur in THF or toluene. The structure of the Horner-Emmons adducts were confirmed by their ¹H-NMR spectra showing a single C₁₉-H at $\delta 5.6$ for the *E*-isomer (7a) and $\delta 5.8$ for *Z*-isomer (7b). The C_{19} -H of (7a) was expected to be more shielded by the 7,8-olefinic electrons than that of (7b). An NOE experiment was conducted on each isomer to establish their stereochemistry. In the *E*-isomer (7a), a positive NOE was observed in the ¹H resonance signal corresponding to the C_{19} -H single proton when the C_7 -H was irradiated. No NOE effect was observed in the ¹H resonance signal of the corresponding hydrogen of the Z-isomer (7b). Reduction of the major, *E*-isomer (7a) with DIBAL followed by acid treatment gave the aldehyde (9) (60% yield), which, on reduction with $NaBH_4$, gave the alcohol (11) (55% yield). The affinity label (16) was obtained by treatment of (11) with BrCH₂COOH in the presence of DCC and DMAP (72%

C-19 Affinity/photoaffinity analogs of 25-OH-D₃: Addo and Ray

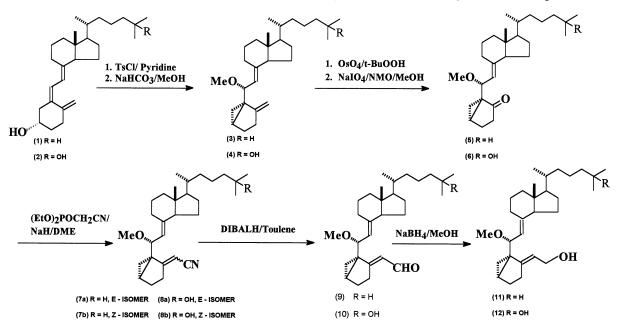


Figure 1 Scheme for the synthesis of 10*E*-19-hydroxymethyl-6*R*-methoxy-3,5-cyclovitamin D_3 and 10*E*-25-hydroxy-19-hydroxymethyl-6*R*-methoxy-3,5-cyclovitamin D_3 (12)

yield), followed by solvolysis with TsOH in 3:1 dioxane/ H_2O) (48.7% yield).

Having successfully established the viability of the synthetic steps, we used 25-OH-D₃ as the starting material to synthesize the desired analogs by applying similar sequence of steps as above. The reaction of (6) with $(EtO)_2POCH_2CN$ proceeded smoothly to give 8:1 ratio of the *E* and *Z*-isomers (**8a**) and (**8b**) respectively in combined yield of 75%. DIBAL reduction of the major *E* isomer (**8a**) led to aldehyde (**10**) (64% yield), whose reduction with NaBH₄ gave alcohol (**12**) (50% yield). The affinity analog (**17**) was obtained by coupling BrCH₂COOH with (**12**) in the pres-

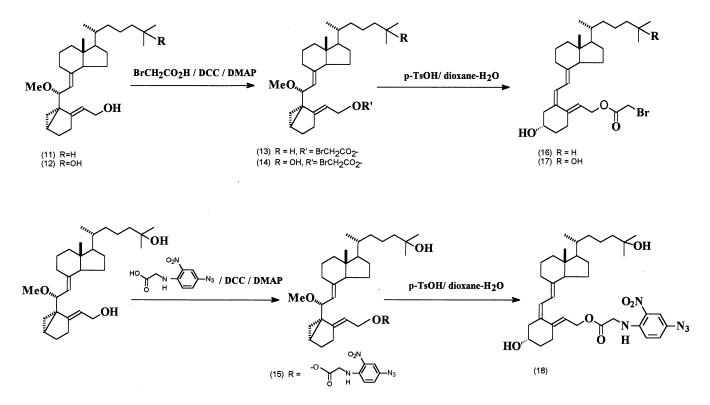
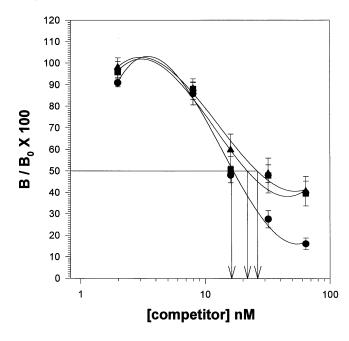



Figure 2 Scheme for the synthesis of C₁₉-modified affinity and photoaffinity labeling analogs of vitamin D₃ and 25-OH-D₃

Figure 3 Competitive radioligand binding assays of 25-OH-D₃, compounds (**17**) and (**18**) with human serum DBP. Samples of DBP (200 ng), ³H-25-OH-D₃ (3,500 cpm in 10 μ L of ethanol) and various concentrations of either 25-OH-D₃ or (**17**) or (**18**) (1 pmol-63.8 pmol) were incubated in the dark in a buffer (50 mM Tris HCI, 150 mM NaCl, 1.5 mM EDTA, 0.1% Triton X-100, pH 8.3, total volume 0.5 mL) at 4°C for 20 h, followed by the incubation with an ice-cold slurry of Dextran-coated charcoal, centrifugation and radioactive counting.¹³ Error bars represent standard deviation of three determinations. ●, 25-OH-D₃; ■, compound (**17**); ▲, compound (**18**).

ence of DCC and DMAP. (72% yield) followed by solvolysis with p-TsOH in a mixture of dioxane and H₂O (3:1) (45% yield). Additionally, the photoaffinity analog (**18**) was obtained from (**12**) by coupling with azidonitrophenylglycine¹⁶ in the presence of DCC and DMAP (79% yield), and subsequent solvolysis (48% yield; Figure 2).

Although synthesis of C19-alkanoic acid derivatives of vitamin D₃ was reported in 1983,²⁷ no biological/biochemical study has been reported to date, possibly due to the unavailability of the corresponding 25-OH-D₃ compounds. Thus, no information is currently available about the effect of C₁₉-modification of vitamin D₃ and its metabolites on DBP and VDR binding. Competitive binding assays of the affinity analog (17) and the photoaffinity analog (18) with DBP demonstrated that the binding affinities of these compounds are only 1.2- and 1.6-times less than that of 25-OH- D_3 , the natural ligand (Figure 3). It is noteworthy that, although the photoaffinity probe has a much higher steric demand than the affinity probe, both (17) and (18) possessed almost equal binding affinity for DBP (Figure 3). These results strongly suggest that C₁₉-modification of 25-OH-D₃ is not significantly detrimental towards DBPbinding. Hence, the C₁₉-affinity and photoaffinity analogs of 25-OH-D₃, with the intact biologically relevant hydroxyl groups, imparting selectivity and specificity towards receptor-binding, could be valuable tools in determining the three-dimensional architecture of the ligand-binding pockets of these proteins.

Acknowledgments

The authors would like to thank Mr. Lincoln Scott (Chemistry Department, Boston University, Boston, MA) for many helpful discussions, and Dr. N. Swamy (Boston University School of Medicine) for assistance with the binding assays. This work was supported partly from grants from NIDDK (RO1 44337 and 47418) of the National Institute of Diabetes, Digestive and Kidney Diseases of the National Institutes of Health.

References

- Holick MF (1989). Vitamin D: biosynthesis, metabolism and mode of action. In: DeGroot LJ, Besser GM et al (eds), *Endocrinology*, vol. 2. WB Saunders, Philadelphia, pp 902–926.
- DeLuca HF (1988). The vitamin D story: a collaborative effort of basic science and clinical medicine. *Fed Proc Am Soc Ex Biol* 2:224–236.
- A review on vitamin D and cancer. Eisman JA (1994). New insight into vitamin D physiology and potential cancer therapy. In: Heersche JN, Kanis JA (eds) J Bone Miner Res Elsevier, Amsterdam, 8:45–76.
- 4. Pike JW (1991). Vitamin D receptors: structure and function in transcription. *Ann Rev Nutr* **11**:189–21.
- Haussler MR (1986). Vitamin D receptors: nature and function. Ann Rev Nutr 6:527–562.
- Sweet FW, Murdock GL (1987). Affinity labeling of hormone specific proteins. *Endocr Rev* 8:154–184.
- Ray R, Holick SA, Hanafin N, Holick MF (1986). Synthesis of 25-hydroxyvitamin D₃-3β-[3'-N-(4-azido-2-nitro)phenyl]glycinate: a photoaffinity analog of 25-hydroxyvitamin D₃ capable of crosslinking to the rat plasma vitamin D binding protein. *Biochemistry* 25:4729–4733.
- Ray R, Bouillon R, Van Baelen H, Holick MF (1991). Synthesis of 25-hydroxyvitamin D₃-3β-[3'-N-(4-azido-2-nitro)phenyl]aminopropylether, a second generation photoaffinity analog of 25hydroxyvitamin D₃: photoaffinity labeling of rat serum vitamin D binding protein. *Biochemistry* **30**:4809–4813.
- Ray R, Bouillon R, Van Baelen H, Holick MF (1991). Photoaffinity labeling of human serum vitamin D-binding protein, and chemical cleavages of the labeled protein: identification of a 11.5 KDa peptide, containing the putative 25-hydroxyvitamin D₃-binding site. *Biochemistry* **30**:7638–7642.
- Haddad JG, Hu YZ, Kowalski MA, Laramore C, Ray K, Robzyk P, Cooke NE (1992). Identification of the sterol- and actin-binding domains of plasma vitamin D binding protein (Gc-globulin). *Biochemistry* 31:7174–7181.
- Swamy N, Ray R (1995). 25-Hydroxy[26,27-methyl-³H]vitamin D₃-3β-(1,2-epoxypropyl)ether: an affinity labeling reagent for human vitamin D-binding protein. *Arch Biochem Biophys* **319**:504–507.
- Link R, Kutner A, Schnoes HK, DeLuca HF (1987). Photoaffinity labelling of serum vitamin D binding protein by 3-deoxy-3-azido-25-hydroxyvitamin D₃. *Biochemistry* 26:3957–3964.
- Swamy N, Ray R (1996). Affinity labeling of rat serum vitamin D binding protein. Arch Biochem Biophys 333:139–144.
- Swamy N, Dutta A, Ray R (1997). Roles of structure and orientation of ligands and ligand mimicks inside the ligand-binding pocket of the vitamin D-binding protein. *Biochemistry* 36:7432–7436.
- Brown TA, DeLuca HF (1991). Photoaffinity labeling of the 1α,25dihydroxyvitamin D₃ receptor. *Biochim Biophys Acta* 1073:4729– 4733.
- Ray R, Holick SA, Holick MF (1985). Synthesis of a photoaffinitylabelled analogue of 1,25-dihydroxyvitamin D₃. J Chem Soc Chem Comm 11:702–703.
- Ray R, Rose SR, Holick SA, Holick MF (1985). Evaluation of a photolabile derivative of 1,25-dihydroxyvitamin D₃ as a photoaffinity probe for 1,25-dihydroxyvitamin D₃ receptor. *Biochem Biophys Res Commun* 132:198–203.

C-19 Affinity/photoaffinity analogs of 25-OH-D₃: Addo and Ray

- Ray R, Holick MF (1988). The synthesis of a radiolabeled photoaffinity analog of 1,25-dihydroxyvitamin D₃. *Steroids* 51:623–630.
- Ray R, Ray S, Holick MF (1993). Photoaffinity labeling of chick intestinal 1α,25-dihydroxyvitamin D₃ receptor. *Steroids* 58:462– 465.
- Ray R, Ray S, Holick MF (1994). 1α,25-dihydroxyvitamin D₃-3deoxy-3β-bromoacetate, an affinity labeling analog of 1α,25dihydroxyvitamin D₃. *Bioorg Chem* 22:276–283.
- Ray R, Swamy N, MacDonald PN, Ray S, Haussler MR, Holick MF (1996). Affinity labeling of 1α,25-dihydroxyvitamin D₃ receptor. *J Biol Chem* 271:2012–2017.
- 22. Addo JK, Ray R. C-6-Functionalized analogs of vitamin D₃, 25-OH-D₃ and 1,25(OH)₂D₃: potential molecular probes for determining ligand binding site topographies of vitamin D-binding protein and vitamin D receptor. In: Norman AW, Bouillon R, Thomasset M (eds), Vitamin D chemistry, biology and clinical applications of the steroid hormone. Proceedings of the tenth workshop on vitamin D,

Strasbourg, France, May 24–29, 1997, University of California, Riverside Press, pp 97–98.

- Addo JK, Swamy N, Ray R. Synthesis and functional characterization of the C-19 affinity and photoaffinity analogs of 25-OH-D₃. Abstract presented at the Tenth workshop on vitamin D, Strasbourg, France, May 24–29, 1997.
- Eguchi T, Kakinuma K, Ikegawa N (1991). Synthesis of 1α-[19-¹³C]hydroxyvitamin D₃ and ¹³C NMR analysis of the conformational equilibrium of the A-ring. *Bioorg Chem* 19:327–332.
- 25. Paaren HE, Schnoes HK, DeLuca HF (1983). Electrophilic addition of OsO_4 25-hydroxycholecalciferol and its 3,5-cyclo derivative. J Org Chem **48**:3819–3820.
- Bayley H, Knowles JR (1977). Photoaffinity labeling. *Methods* Enzymol 46:69–114.
- Yamada S, Suzuki T, Takayama H (1983). Stereoselective synthesis of (5E)- and (5Z)-vitamin D₃-alkanoic acids via vitamin D₃-sulfur dioxide adducts. *J Org Chem* 48:3483–3488.