

Enantioselective Iridium-Catalyzed Allylic Cyclizations

Michael A. Schafroth,[©] Stephan M. Rummelt, David Sarlah,[†][©] and Erick M. Carreira^{*}[©]

ETH Zürich, Vladimir-Prelog-Weg 3, 8093 Zürich, Switzerland

Supporting Information

ABSTRACT: A method for the enantioselective synthesis of carbo- and heterocyclic ring systems enabled through the combination of Lewis acid activation and iridium-catalyzed allylic substitution is described. The reaction proceeds with branched, allylic alcohols and carbon nucleophiles as well as heteronucleophiles to give a diverse set of ring systems in good yields and with high enantioselectivities. The utility of the method is highlighted by the asymmetric syntheses of erythrococcamides A and B.

etero- and carbocycles are ubiquitous in natural isolates and in synthetic drugs with diverse modes of action.¹ The development and improvement of cross-coupling chemistry has widened the availability of aromatic building blocks, which ultimately led to an increased aromatic ring count in small molecule drugs.^{2,3} However, recent data indicate that there is a limit to the aromatic ring count beyond which it becomes detrimental for the development of drug candidates.⁴ As a way around such limitations, saturated rings can impart beneficial effects in terms of pharmacokinetics, solubility, or bioavailability.⁵ Hence, the discovery of simple catalytic methods that rapidly provide sets of structurally diverse saturated (hetero)cyclic motifs is desirable. Herein, we report a general and direct Ir-catalyzed, enantioselective, allylic cyclization of unactivated, branched allylic alcohols with oxygen- and nitrogen-based heteronucleophiles, as well as electron-rich aromatic substrates (Scheme 1a and b).⁶ The practicality of the approach is demonstrated with the enantioselective syntheses of erythrococcamides A and B (Scheme 1c).

Significant research efforts have focused on the development of enantioselective, catalytic methods for the preparation of Nheterocycles (e.g., pyrrolidines, piperidines, piperazines, tetrahydroquinolines), O-heterocycles (e.g., oxanes, dioxanes), and carbocycles (tetrahydrocarbazole, tetrahydrobenzpyrane).⁷ Among them, the application of iridium-catalyzed, enantioselective, allylic cyclization has recently attracted attention. Helmchen has reported intramolecular Ir-catalyzed allylic aminations using phosphoramidite ligands in combination with bases to promote the formation of 5- to 7-membered rings.8 An intramolecular allylic amidation reaction for the synthesis of tetrahydroisoquinolines as well as 5- and 6membered rings was developed by Feringa and co-workers.⁹ Additionally, the You group recently disclosed several approaches for intramolecular allylic substitution reactions with amines and carbon nucleophiles (indoles, pyrroles, and phenols).¹⁰

Scheme 1. Enantioselective Iridium-Catalyzed Allylic Cyclizations

a) general reaction scheme:

It is important to note, however, that common to these protocols are different requirements in the reaction conditions (solvents, promoters, ligands, or metal precursors) for incorporation of various (hetero)nucleophiles and preparation of different ring sizes. Furthermore, the use of a stoichiometric amount of base and activation of the allylic alcohol as a carbonate or acetate are often required. The incorporation of activating groups leads to longer, less straightforward substrate syntheses and to sequences that are suboptimal vis a vis atom economy.

We have previously reported the direct substitution of branched allylic alcohols with a variety of nucleophiles. 11 In

Received: May 4, 2017

light of our report on Ir-catalyzed, zinc triflate promoted polyene cyclizations we were interested in expanding this approach to access a broader range of chiral, cyclic building blocks.¹² To evaluate the potential of the $[Ir]/Zn(OTf)_2$ system to promote allylic cyclizations with various nucleophiles, we subjected allylic alcohol substrate **1a** to the reaction conditions shown in Scheme 2, and we were pleased to observe

the formation of cyclization product **2a** in 79% yield with excellent enantioselectivity (>99% ee, Scheme 2). Phenol substrate **3a** bearing a nucleophilic alcohol readily cyclized under identical conditions to give the corresponding dihydrobenzopyran derivative **4a** in 66% yield and >98% ee (Scheme 2).¹³

With these promising results in hand, the generality and scope of the reaction was examined. The initial focus was on the use of sp²-carbon nucleophiles to generate fused ring systems (Scheme 3). The reaction proceeded well with electron-rich alkoxy-substituted substrates to give products 2a-2c in good yields and >99% ee (Scheme 3, entries 2a-2c). Interestingly, the use of arenes 2b-2c led to exclusive

^{*a*}Unless noted otherwise all reactions were conducted on 0.25 mmol scale under standard conditions (4 mol % [Ir], 16 mol % (S)-L, 10 mol % Zn(OTf)₂ at 25 °C for 24 h). ^{*b*}Yields of isolated products. ^{*c*}% ee determined by SFC on a chiral stationary phase. ^{*d*}Conducted with 20 mol % Zn(OTf)₂. ^{*e*}Conducted at 50 °C.

cyclization at the position para to the methoxy substituent. This stands in contrast to our previous observations in a polyene cyclization reaction where both regioisomers were isolated (2:1 para/ortho selectivity). It also highlights a difference to the method by You and co-workers where product mixtures in favor of ortho functionalization were usually observed (1:4 to 1:6 para/ortho selectivity).^{10d} The formation of five-membered rings employing this method was successful, furnishing the fused rings with >99% ee (2d). Substrates incorporating hetarenes smoothly underwent cyclization, as showcased with the examples of indoles (2e-2f) and pyrrole (2g). Next, we turned our attention to substrates that incorporate heteroatom tethers, leading to saturated heterocyclic products. Substrates derived from phenols (2h-2i) and anilines (2i) provided the corresponding dihydrobenzopyran and tetrahydroquinoline products, respectively. In a similar manner, tetrahydroisoquinoline (2k) and furanopiperidine 2l were obtained in good yields with excellent enantioselectivities. For substrates 2h-2k no cyclization at the *ortho* position was observed, and, consequently, the products were isolated as single isomers.¹⁴ We suggest steric interactions between the substituent on the aromatic ring of the substrate and the ligand on the active iridium species as a possible explanation for this exclusive para selectivity (Figure 1). This hypothesis is

Figure 1. Transition state models leading to the *ortho* or *para* substituted products, respectively.

supported by a model based on our recent mechanistic studies involving X-ray characterization of a catalytically active Ir(III) species, which highlights steric repulsion between the azepine moiety of the non-chelating ligand with the *ortho* substituent.¹⁵ Such repulsive interactions would be minimized for the intermediate/transition state leading to the *para* substituted product.

Next, we sought to examine the scope of oxygen and nitrogen nucleophiles. The optimal conditions for the production of **4a** allowed a lower Ir-catalyst loading (2 mol % [Ir(cod)Cl]₂, 8 mol % (S)-L, 20 mol % Zn(OTf)₂) while affording higher yields of the cyclization product (79% yield, 98% ee, Scheme 4, entry **4a**). In a similar manner, 5-membered dihydrobenzofuran derivative **4b** was obtained in 88% yield and 96.5% ee. The use of aliphatic alcohols as substrates for cyclization was evaluated next. Under standard conditions, 6membered tetrahydropyran and dioxane derivatives were obtained in good yield and with good enantioselectivities (**4c**-**4d**). 1,6- and 1,7-Diol substrates readily cyclized to give the corresponding 7- and 8-membered, medium-sized rings. The set of products includes derivatives of oxepane (entry **4e**),

Scheme 4. Reaction Scope with Heteroatom Nucleophiles a,b,c

^{*a*}Unless noted otherwise all reactions were conducted on 0.25 mmol scale under standard conditions (4 mol % [Ir], 16 mol % (*S*)-L, 20 mol % Zn(OTf)₂ at 25 °C for 36 h). ^{*b*}Yields of isolated products. ^{*c*}% ee determined by SFC on a chiral stationary phase. ^{*d*}Conducted with 2 mol % [{Ir(cod)Cl}]₂, 8 mol % (*S*)-L. ^{*c*}Conducted at 50 °C. ^{*f*}Due to high volatility isolated as the corresponding benzoate, after hydroboration; see Supporting Information for further information. ^{*g*}At 50 °C isolated in 84% yield with 90% ee. ^{*h*}At 50 °C isolated in 92% yield with 65% ee.

oxazepane (entries 4f-4g), and oxazocane (entry 4h). It is important to note that formation of product resulting from the alternative intermolecular pathway was only observed in one instance (entry 4h). Conducting the reaction at higher dilution did not improve the yield of the desired product. Nitrogen based nucleophiles in the intramolecular allylic substitution reaction were subsequently examined. The corresponding 1,4-, 1,5-, and 1,6-sulfonamide–alcohol substrates readily cyclized to give enantioenriched pyrrolidine (entry 4i), piperidine (entry 4j), piperazine (entry 4k), and diazepane derivatives (entry 4l). However, the yields for 4i and 4k were improved when the reaction was performed at elevated temperature (50 °C), albeit with reduction of enantioselectivities.

To highlight the synthetic utility of the $[Ir]/Zn(OTf)_2$ cyclization method beyond the generation of simple building blocks, enantioselective syntheses of erythrococcamides A and B were conducted (Scheme 5). These isobutylamides were isolated from Dinosperma erythrococca, and to date, only a single enantioselective synthesis of erythrococcamide B has been reported.^{16,17} Starting from sesamol, the cyclization substrate 5 was prepared in 3 steps, which when subjected to [Ir]/ $Zn(OTf)_2$ afforded cyclization product 6 in 80% yield and >98% ee (reaction was performed on >7.5 mmol scale). The side chain was installed by hydroboration, followed by oxidative workup and subsequent TEMPO oxidation of the alcohol to the corresponding aldehyde 7 (79% yield over 2 steps). Pinnick oxidation of aldehyde 7 and direct amide bond formation of the crude carboxylic acid with isobutylamine afforded enterythrococcamide B (8) in 87% yield over 2 steps. In the synthesis of erythrococcamide A, Wittig reaction of aldehyde 7

Scheme 5. Total Syntheses of Erythrococcamides A and B

^aStandard conditions for [Ir]/Zn(OTf)₂, 80%, 98.5% ee. ^b2.0 equiv of 9-BBN, THF, 60 °C, 16 h; then 10.0 equiv of NaBO₃·4H₂O, 0 to 25 °C, 24 h, 93%. ^c20 mol % TEMPO, 1.2 equiv of PhI(OAc)₂, CH₂Cl₂, 25 °C, 2 h, 85%. ^dPinnick oxidation: 12.0 equiv of 2-methyl-2-butene, 5.0 equiv of NaClO₂, H₂O, 0 to 25 °C, 3 h; then subsequent amide coupling, 4.0 equiv of 2-methylpropan-1-amine, 2.0 equiv of HATU, DMF, 0 to 25 °C, 16 h, 87% over 2 steps. ^e2.0 equiv of (*E*)-methyl 4-(triphenylphosphoranylidene)but-2-enoate, CH₂Cl₂, 25 °C, 2.5 h, then 1 mol % I₂, benzene, reflux, 5 h, 65%, E/Z = 9:1. ^f3.0 equiv of LiOH, THF/MeOH, 25 °C, 16 h, then 4.0 equiv of 2-methylpropan-1-amine, 2.0 equiv of HATU, DMF, 0 to 25 °C, 16 h, 92% yield over 2 steps.

with a stabilized ylidene resulted in an intermediate ester (1:1 mixture of diastereomers), which, following treatment with iodine, furnished a 9:1 (E)/(Z)-mixture. Saponification of the ester followed by amide bond formation with isobutylamine afforded *ent*-erythrococcamide A (9) in 92% yield over 2 steps.

In conclusion, we have developed a uniform method for the enantioselective, intramolecular allylic substitution reaction with aliphatic alcohols, sulphonamides, and electron-rich arenes as nucleophiles. The method enables the preparation of a unique set of heterocyclic ring systems via user-friendly and scalable conditions. The utility and generality of the method was showcased through the syntheses of erythrococcamides A and B.

ASSOCIATED CONTENT

Supporting Information

The Supporting Information is available free of charge on the ACS Publications website at DOI: 10.1021/acs.or-glett.7b01346.

Detailed experimental procedures, and characterization data and copies of ¹H, ¹³C NMR spectra and SFC traces of the products (PDF)

AUTHOR INFORMATION

Corresponding Author

*E-mail: erickm.carreira@org.chem.ethz.ch. ORCID [©]

Michael A. Schafroth: 0000-0002-5864-6766 David Sarlah: 0000-0002-8736-8953

Erick M. Carreira: 0000-0003-1472-490X

Present Address

[†]Roger Adams Laboratory, Department of Chemistry, University of Illinois, Urbana, Illinois 61801, USA.

Notes

The authors declare no competing financial interest.

ACKNOWLEDGMENTS

We are grateful to ETH Zurich and the Swiss National Science Foundation (200020 152898) for financial support.

Organic Letters

REFERENCES

 For examples, see: (a) Kleeman, A.; Engel, J.; Kutscher, B.; Reichert, D. *Pharmaceutical Substances*; Thieme: New York, 2001.
 (b) Faulkner, D. J. *Nat. Prod. Rep.* 2002, 19, 1.

(2) A recent review and references therein: Vo, C.-V. T.; Bode, J. W. J. Org. Chem. 2014, 79, 2809.

(3) Metal-Catalyzed Cross-Coupling Reactions; de Meijerer, A., Diederich, F., Eds.; Wiley-VCH: Weinheim, 2004.

(4) Ritchie, T. J.; Macdonald, S. J. F. Drug Discovery Today 2009, 14, 1011.

(5) Leeson, R. D.; St-Gallay, S. A.; Wenlock, M. C. MedChemComm 2011, 2, 91.

(6) To the best of our knowledge, this is the first report of a general, enantioselective, intramolecular Ir-catalyzed allylic etherification reaction. To date only two isolated examples have been reported: (a) See ref 8b. (b) Deng, J.; Zhou, S.; Zhang, W.; Li, J.; Li, R.; Li, A. J. Am. Chem. Soc. **2014**, *136*, 8185.

(7) For selected examples, see: (a) Seayad, J.; Seayad, A. M.; List, B. J. Am. Chem. Soc. 2006, 128, 1086. (b) Taylor, M. S.; Jacobsen, E. N. J. Am. Chem. Soc. 2004, 126, 10558. (c) Raheem, I. T.; Thiara, P. S.; Peterson, E. A.; Jacobsen, E. N. J. Am. Chem. Soc. 2007, 129, 13404. (d) Raheem, I. T.; Thiara, P. S.; Jacobsen, E. N. Org. Lett. 2008, 10, 1577. (e) Takamura, M.; Funabashi, K.; Kanai, M.; Shibasaki, M. J. Am. Chem. Soc. 2001, 122, 6327. (f) Takamura, M.; Funabashi, K.; Kanai, M.; Shibasaki, M. J. Am. Chem. Soc. 2001, 123, 6801. (g) Funabashi, K.; Ratni, H.; Kanai, M.; Shibasaki, M. J. Am. Chem. Soc. 2001, 123, 10784. (h) Ichikawa, E.; Suzuki, M.; Yabu, K.; Albert, M.; Kanai, M.; Shibasaki, M. J. Am. Chem. Soc. 2004, 126, 11808. (i) Tanaka, S.; Seki, T.; Kitamura, M. Angew. Chem., Int. Ed. 2009, 48, 8948.

(8) (a) Welter, C.; Koch, O.; Lipowsky, G.; Helmchen, G. N. Chem. Commun. 2004, 896–897. (b) Welter, C.; Dahnz, A.; Brunner, B.; Streiff, S.; Dübon, P.; Helmchen, G. Org. Lett. 2005, 7, 1239.
(c) Spiess, S.; Welter, C.; Franck, G.; Taquet, J.-P.; Helmchen, G. Angew. Chem., Int. Ed. 2008, 47, 7652.

(9) Teichert, J. F.; Fañanás-Mastral, M.; Feringa, B. L. Angew. Chem., Int. Ed. **2011**, 50, 688.

(10) (a) Zhuo, C.-X.; Wu, Q.-F.; Zhao, Q.; Xu, Q.-L.; You, S.-L. J. Am. Chem. Soc. 2013, 135, 8169. (b) Xu, Q.-L.; Zhuo, C.-X.; Dai, L.-X.; You, S.-L. Org. Lett. 2013, 15, 5909. (c) Xu, Q.-L.; Dai, L.-X.; You, S.-L. Chem. Sci. 2013, 4, 97. (d) Xu, Q.-L.; Dai, L.-X.; You, S.-L. Org. Lett. 2012, 14, 2579. (e) Ye, K.-Y.; Cheng, Q.; Zhuo, C.-X.; Dai, L.-X.; You, S.-L. Angew. Chem., Int. Ed. 2016, 55, 8113. (f) Yang, Z.-P.; Wu, Q.-F.; Shao, W.; You, S.-L. J. Am. Chem. Soc. 2015, 137, 15899. (g) Zhuo, C.-X.; Cheng, Q.; Liu, W.-B.; Zhao, Q.; You, S.-L. Angew. Chem., Int. Ed. 2015, 54, 8475.

(11) Amine and oxygen nucleophiles: (a) Defieber, C.; Ariger, M. A.; Moriel, P.; Carreira, E. M. Angew. Chem., Int. Ed. 2007, 46, 3139. (b) Lafrance, M.; Roggen, M.; Carreira, E. M. Angew. Chem., Int. Ed. 2012, 51, 3470. (c) Roggen, M.; Carreira, E. M. Angew. Chem., Int. Ed. 2011, 50, 5568. Vinyl- and alkyne tetrafluoroborates: (d) Hamilton, J. Y.; Sarlah, D.; Carreira, E. M. J. Am. Chem. Soc. 2013, 135, 994. (e) Hamilton, J. Y.; Sarlah, D.; Carreira, E. M. Angew. Chem., Int. Ed. 2013, 52, 7532. Olefins: (f) Hamilton, J. Y.; Sarlah, D.; Carreira, E. M. J. Am. Chem. Soc. 2014, 136, 3006. Dual catalysis with chiral amines and aldehydes: (g) Krautwald, S.; Sarlah, D.; Schafroth, M. A.; Carreira, E. M. Science 2013, 340, 1065. (h) Krautwald, S.; Schafroth, M. A.; Sarlah, D.; Carreira, E. M. J. Am. Chem. Soc. 2014, 136, 3020. (i) Sandmeier, T.; Krautwald, S.; Zipfel, H. F.; Carreira, E. M. Angew. Chem., Int. Ed. 2015, 54, 14363. Organozinc compounds: (j) Hamilton, J. Y.; Sarlah, D.; Carreira, E. M. Angew. Chem., Int. Ed. 2015, 54, 7644. Hydrazones: (k) Breitler, S.; Carreira, E. M. J. Am. Chem. Soc. 2015, 137, 5296. Allylsilanes: (1) Hamilton, J. Y.; Hauser, N.; Sarlah, D.; Carreira, E. M. Angew. Chem., Int. Ed. 2014, 53, 10759. (12) Schafroth, M. A.; Sarlah, D.; Krautwald, S.; Carreira, E. M. J. Am. Chem. Soc. 2012, 134, 20276.

(13) For more details on screening of different promoters and conditions, see Supporting Information.

(14) Importantly, for all cases examined, the potentially competitive intermolecular arylation pathway is completely suppressed. The only

detectable byproduct is a linear ethyl ketone, resulting from isomerization of the corresponding allylic alcohol that was observed in some cases.

(15) Rössler, S. L.; Krautwald, S.; Carreira, E. M. J. Am. Chem. Soc. 2017, 139, 3603-3606.

(16) Latif, Z.; Hartley, T.; Rice, M.; Waigh, R.; Waterman, P. J. Nat. Prod. 1998, 61, 614–619.

(17) Azuma, T.; Murata, A.; Kobayashi, Y.; Inokuma, T.; Takemoto, Y. Org. Lett. **2014**, *16*, 4256–4259.