Irreversible Enzyme Inhibitors. 185. 1,2 Active-Site-Directed Irreversible Inhibitors of Guanine Deaminase Derived from 9-Phenylguanine Bearing a Terminal Sulfonyl Fluoride.

B. R. Baker* and Hans-Ulrich Stebeneick

Department of Chemistry, University of California at Santa Barbara, Santa Barbara, California 93106

Received March 8, 1971

Eleven derivatives of 9-phenylguanine bridged from its meta position and 11 derivatives of 9-(p-ethoxyphenyl)guanine bridged from its terminal Me group by carboxamide or ureido bridges to substituted benzenesulfonyl fluorides were synthesized, then investigated as irreversible inhibitors of Walker 256 guanine deaminase. Four of the compds (6, 8, 10, 11) gave essentially complete inactivation of the tumor enzyme, but failed to show tissue specificity in that the rat liver enzyme was also inactivated.

In a previous paper³ a series of 9-phenylguanines bridged to a terminal SO₂F were investigated as irreversible inhibitors of guanine deaminase from rabbit liver, Walker 256 rat tumor, and rat liver. None of the compds were completely satisfactory in giving good irreversible inhibition of the Walker 256 enzyme with little or no inactivation of the rat liver enzyme. For example, 12 µM 1 gave 100% inactivation of the Walker

$$H_2N$$
 N
 N
 R

 $1, R = m \cdot NHCOC_6H_3 \cdot 2 \cdot Cl \cdot 5 \cdot SO_2F$ 2, $R = p \cdot O(CH_2)_2 NHCOC_6 H_4 SO_2 F \cdot p$

256 enzyme, but showed no tissue specificity since the rat liver enzyme was inactivated 81%; 2 showed good specificity with no inactivation of the liver enzyme, but only 46% inactivation of the tumor enzyme. When the SO₂F group of 2 was moved to the meta position (2a) 47% inactivation of Walker 256 enzyme and 22% inactivation of the rat liver enzyme was seen.3 Therefore an additional 21 structural variants of 1 and 2 have now been synthesized and evaluated. The results are the subject of this paper.

Enzyme Results.—The compds in Table I can be divided into 4 classes. The first class contains derivatives of 9-(m-benzamidophenyl)guanine, 3 of which (1, 3, 9) were previously reported to be highly effective in inactivating Walker 256 guanine deaminase, but also inactivated the rat liver enzyme; 7 additional analogs were synthesized for evaluation. Replacement of the 2-Cl of 1 by Me (4) or MeO (5) reduced the irreversible potency, but shift of the 2-Cl to 4-Cl (6) gave just as effective an irreversible inhibitor. Introduction of a second Me group (7) on 4 destroyed the irreversible activity, but introduction of a second Cl atom (8) on 1 did not; these compds (4-6, 8) also showed high inactivation of the rat liver enzyme.

Introduction of a 3-Cl (10) or 3-Me (11) on 9 still allowed retention of high inactivation of the Walker 256 enzyme, but no specificity toward the rat liver enzyme was seen. Removal of SO₂F from 8 and 10 to give 14 and 13, respectively, destroyed the irreversible inhibition, but not the reversible inhibition; these results would be expected if the SO₂F group is involved in covalent bond formation with the enzyme by the activesite-directed mechanism.4

The second series contains derivatives of 9-(m-phenylureidophenyl)guanine; the parent compds (15, 17) were previously reported to be poor to fair irreversible inhibitors of guanine deaminase; introduction of Me (16, 18, 20) or Cl (19) substituents did not enhance the inactivation.

The third series contains derivatives of 9-(p-benzamidoethoxyphenyl)guanine; the parent m-SO₂F (2a) and p-SO₂F (2) compds were previously reported.3 Introduction of Me (21, 24), MeO (22), or Cl (23) substituents failed to enhance the inactivation.

The fourth series contains derivatives of 9-(p-phenylureidoethoxyphenyl)guanine; the parent $m-SO_2F$ (25) and p-SO₂F (28) were poor to ineffective irreversible inhibitors. Introduction of Cl (27, 31) or Me (26, 30) failed to enhance the irreversible inhibition, nor did insertion of a CH₂ group (32) in the phenylureido moiety. Introduction of 2,4-Me₂ (28) destroyed the already weak irreversible inhibition.

Seven of the compds in the 9-(m-benzamidophenyl)guanine series (1, 3, 6, 8, 9-11) show excellent inactivation of Walker 256 guanine deaminase by the activesite-directed mechanism, but also show no specificity since they inactivate the rat liver enzyme. The other 3 series of compds do not inactivate the enzyme sufficiently. Therefore future studies for specificity should focus on 9-(m-acylamidophenyl)guanines bridged to a terminal SO₂F, perhaps with longer bridges.

Chemistry.—The two acylamido series (38) in Table I were prepared by acylation of 9-(m-aminophenyl)guanine (34)⁵ or 9-(p-aminoethoxyphenyl)guanine (35)⁶ with the appropriate acid chloride. The two phenylureido series (37) were synthesized by condensation of the 2 amines with the appropriate O-(p-nitrophenyl)-N-arylcarbamate (33).7 The acids required for the synthesis of 4, 6, 21, and 23 were previously described.8 New acids required for 7, 8, and 24 were synthesized as follows.

⁽¹⁾ This work was generously supported by Grant CA-08695 from the National Cancer Institute, U.S. Public Health Service.

⁽²⁾ For the previous paper of the series see B. R. Baker and H. U. Siebeneick, J. Med. Chem., 14, 799 (1971).

⁽³⁾ For the previous paper on this enzyme see B. R. Baker and W. F. Wood, ibid., 12, 216 (1969).

⁽⁴⁾ B. R. Baker, "Design of Active-Site-Directed Irreversible Enzyme Inhibitors," Wiley, New York, N. Y., 1967.

⁽⁵⁾ B. R. Baker and W. F. Wood, J. Med. Chem., 10, 1101 (1967).

⁽⁶⁾ B. R. Baker and W. F. Wood, ibid., 12, 214 (1969).

⁽⁷⁾ B. R. Baker and N. M. J. Vermeulen, ibid., 12, 74 (1969).

⁽⁸⁾ B. R. Baker and R. B. Meyer, Jr., ibid., 12, 104 (1969).

		_ /		
No.	R	Enzyme source	Reversible I_{50} , b μM	Irreversible, % inactvn ^c
1 ^d	$m ext{-NHCOC}_6 ext{H}_3 ext{-}2 ext{-Cl-5-SO}_2 ext{F}$	W256	0.035	100
1	m-1(110006113 2 01 0 0021	Rat liver	*****	81
2^d	$p ext{-}\mathrm{O}(\mathrm{CH}_2)_2\mathrm{NHCOC}_6\mathrm{H}_4\mathrm{SO}_2\mathrm{F} ext{-}p$	W256	0.28	46
-	p = (= 112) 21 112 = = = = = = = = = = = = = = = =	Rat liver		0
$2a^d$	$p ext{-}\mathrm{O}(\mathrm{CH}_2)_2\mathrm{NHCOC_6H_4SO_2F} ext{-}m$	W256	0.70	47
2.0	p = (= -2/2- ·== + = = 0 = -4 = = 2 = · · ·	Rat liver		22
		Rabbit liver		0
3 d	$m ext{-} ext{NHCOC}_6 ext{H}_4 ext{SO}_2 ext{F-}m$	W256	0.11	93
J		Rat liver		73
4	$m ext{-NHCOC}_6 ext{H}_3 ext{-}2 ext{-Me-}5 ext{-SO}_2 ext{F}$	W256	0.060	59
_	······································	Rat liver		81
5	$m ext{-} ext{NHCOC}_6 ext{H}_3 ext{-}2 ext{-} ext{MeO-5-SO}_2 ext{F}$	W256	0.050	72
•		Rat liver		6 8
6	$m ext{-} ext{NHCOC}_6 ext{H}_3 ext{-} ext{Cl-}3 ext{-} ext{SO}_2 ext{F}$	W256	0.080	100
-		Rat liver		94
7	$m ext{-} ext{NHCOC}_6 ext{H}_2 ext{-}2,\!4 ext{-} ext{Me}_2 ext{-}5 ext{-} ext{SO}_2 ext{F}$	W256	0.042	0
8	$m ext{-NHCOC}_6 ext{H}_2 ext{-}2,\!4 ext{-Cl}_2 ext{-}5 ext{-SO}_2 ext{F}$	W256	0.046	100
		Rat liver		1001
94	$m ext{-} ext{NHCOC}_6 ext{H}_4 ext{SO}_2 ext{F-}p$	W256	0.064	94
	* * * 1	Rat liver		91
10	$m ext{-} ext{NHCOC}_6 ext{H}_3 ext{-}3 ext{-} ext{Cl-4-SO}_2 ext{F}$	W256	0.078	100
		Rat liver		84
11	$m ext{-} ext{NHCOC}_6 ext{H}_3 ext{-}3 ext{-} ext{Me-4-SO}_2 ext{F}$	W256	0.056	94
		Rat liver		82
12	$m ext{-} ext{NHCOC}_6 ext{H}_4 ext{Cl-}o$	W256	0.025	
13	$m ext{-} ext{NHCOC}_6 ext{H}_4 ext{Cl-}m$	W256	0.036	21
14	$m ext{-} ext{NHCOC}_6 ext{H}_3 ext{Cl}_2 ext{-}2,4$	W256	0.047	0
15^{d}	$m ext{-} ext{NHCONHC}_6 ext{H}_4 ext{SO}_2 ext{F-}p$	W256	0.034	13
16	$m ext{-} ext{NHCONHC}_6 ext{H}_3 ext{-}3 ext{-} ext{Me-4-SO}_2 ext{F}$	W256	0.049	12
17 ^d	$m ext{-} ext{NHCONHC}_6 ext{H}_4 ext{SO}_2 ext{F-}m$	W256	0.12	45
		Rat liver		74
18	$m ext{-} ext{NHCONHC}_6 ext{H}_3 ext{-}2 ext{-} ext{Me-5-SO}_2 ext{F}$	W256	0.29	21
19	$m ext{-} ext{NHCONHC}_6 ext{H}_3 ext{-} ext{4-} ext{Cl-3-SO}_2 ext{F}$	W256	0.062	52
		Rat liver		65
20	$m ext{-} ext{NHCONHC}_6 ext{H}_2 ext{-}2,\!4 ext{-} ext{Me}_2 ext{-}5 ext{-} ext{SO}_2 ext{F}$	W256	0.35	0
21	$p ext{-}O(ext{CH}_2)_2 ext{NHCOC}_6 ext{H}_3 ext{-}2 ext{-Me-5-SO}_2 ext{F}$	W256	0.61	13
		Rat liver		20
22	$p ext{-O(CH}_2)_2 ext{NHCOC}_6 ext{H}_3 ext{-}2 ext{-MeO-}5 ext{-SO}_2 ext{F}$	W256	0.16	0
		Rat liver		40
23	$p ext{-O(CH}_2)_2 ext{NHCOC}_6 ext{H}_3 ext{-}4 ext{-Cl-3-SO}_2 ext{F}$	W256	0.35	32
24	$p ext{-O(CH}_2)_2 ext{NHCOC}_6 ext{H}_2 ext{-}2,4 ext{-Me}_2 ext{-}5 ext{-SO}_2 ext{F}$	W256	0.24	17
25^d	$p ext{-O(CH}_2)_2 ext{NHCONHC}_6 ext{H}_4 ext{SO}_2 ext{F-}m$	W256	0.070	43
		Rat liver		28
26	$p ext{-O(CH}_2)_2 ext{NHCONHC}_6 ext{H}_3 ext{-}2 ext{-Me-5-SO}_2 ext{F}$	W256	0.089	18
27	$p ext{-O(CH}_2)_2 ext{NHCONHC}_6 ext{H}_3 ext{-}4 ext{-Cl-}3 ext{-SO}_2 ext{F}$	W256	0.10	40
		Rat liver		44
28	$p ext{-}\mathrm{O}(\mathrm{CH}_2)_2\mathrm{NHCONHC}_6\mathrm{H}_2 ext{-}2,\!4 ext{-}\mathrm{Me}_2 ext{-}5 ext{-}\mathrm{SO}_2\mathrm{F}$	W256	0.13	0
29^{d}	$p ext{-O(CH}_2)_2 ext{NHCONHC}_6 ext{H}_4 ext{SO}_2 ext{F-}p$	W256	0.067	0
30	$p ext{-}\mathrm{O}(\mathrm{CH}_2)_2\mathrm{NHCONHC}_6\mathrm{H}_3 ext{-}3 ext{-}\mathrm{Me} ext{-}4 ext{-}\mathrm{SO}_2\mathrm{F}$	W256	0.10	11
31	$p ext{-}\mathrm{O}(\mathrm{CH}_2)_2\mathrm{NHCONHC}_6\mathrm{H}_3 ext{-}3 ext{-}\mathrm{Cl} ext{-}4 ext{-}\mathrm{SO}_2\mathrm{F}$	W256	0.14	22
32	$p ext{-O(CH}_2)_2 ext{NHCONHCH}_2 ext{C}_6 ext{H}_4 ext{SO}_2 ext{F-}p$	W256	0.20	12
he technical	assistance of Julie Beardslee and Pauline Minton with th	nese assays is acknowledg	ed. b Assaved wit	h 13.3 µM guar

^a The technical assistance of Julie Beardslee and Pauline Minton with these assays is acknowledged. ^b Assayed with 13.3 μM guanine in pH 7.4 Tris buffer contg 10% DMSO as previously described; ² $I_{50}=$ concn for 50% inhibn. ^c Incubated 12 μM inhibitor with enzyme at 37° in pH 7.4 Tris buffer contg 10% DMSO, then the remaining enzyme assayed as previously described. ³ ^d Data from ref 3. ^e Result previously reported erroneously ³ as rat liver source. ^f A time study showed inactivation was 100% in <2 min.

2,4-Dimethylbenzoic acid was fluorosulfonated with FSO₃H to give 2,4-dimethyl-5-fluorosulfonylbenzoic acid (method A).

5-Amino-2,4-dichlorobenzoic acid¹⁰ was diazotized and then converted to the sulfonyl chloride.¹¹ This

⁽¹⁰⁾ I. Kh. Fel'dman and Ch. S. Frankovskii, Zh. Obshch. Khim., 32, 2115 (1962); Chem. Abstr., 58, 10108a (1963).

⁽¹¹⁾ H. Meerwein, G. Dittmar, R. Göllner, K. Hafner, F. Mensch, and O. Steinfort, Chem. Ber., 90, 841 (1957).

$$O_2N$$
OCONH \bigcirc R SO_2F

No.a	R	rield,	amine	Mp, °C	Formula ^f
33a	2-Me	56	c	195-198	$C_{14}H_{11}FN_2O_6S$
33b	4-Cl	67	d	159-161	$\mathrm{C_{13}H_{8}ClFN_{2}O_{6}S}$
33c	$2,4-\mathrm{Me}_2$	71	e	167-170	${ m C_{15}H_{13}FN_2O_6S}$

 a All compds were prepd by Method C.7 b All compds were recrystd from CH₂Cl₂. c See ref 14. d See ref 12. e Acid hydrolysis of 2,4-dimethyl-5-fluorosulfonylacetanilide. f All compds were anal. for C, H, N.

reacted with KF in dioxane¹² to give 2,4-dichloro-5-fluorosulfonylbenzoic acid. 3-Chloro- and 3-methyl-4-fluorosulfonylbenzoic acid were prepared in the same manner.

The carbamates required for the synthesis of 16, 30, and 31 were previously reported.¹³ New carbamates

required for 18, 19, 20, 26, 27, and 28 were synthesized as follows: 5-fluorosulfonyl-2-methylaniline¹⁴ and 4-chloro-3-fluorosulfonylaniline¹² were treated with p-nitrophenyl chloroformate to give 33a and 33c (method C).⁷ 2,4-Dimethylacetanilide¹⁵ was fluorosulfonated (method A) and then hydrolyzed to the amine. This reacted with p-nitrophenyl chloroformate to give 33c.

Experimental Section

Melting points were taken in capillary tubes on a Mel-Temp block and are uncorrected. All anal. samples had ir spectra compatible with their assigned structures and moved as a single spot on the with Brinkman silica gel GF; each gave combustion values for C, H, and N or F within 0.4% of theory.

2,4-Dimethyl-5-fluorosulfonylbenzoic Acid (39c) (Method A). —2,4-Dimethylbenzoic acid (7.5 g, 0.05 mmole) was added gradually to 20 ml of FSO₃H over 5 min. The mixt was stirred at 80° for 4 hr, cooled to room temp, then poured on 300 g of ice. The solid was collected, washed (H_2O), and recrystd from EtOH- H_2O ; yield, 7.0 g (60%), mp 217-219° (see Table III).

2,4-Dimethyl-5-fluorosulfonylacetanilide.—Fluorosulfonation (method A) of 6.3 g (38.7 mmoles) of 2,4-dimethylacetanilide¹⁵

TABLE III

PHYSICAL PROPERTIES OF

HOOC—
SO_2F

		Position					
No.	R	$^{ m of}_{ m SO_2F}$	Yield,ª %	Ref to amine	Mp, °C	Formula	Analyses
39a ^b	3-Cl	4	3 8	c	216-218	C7H4ClFO4S	С, Н
$39b^b$	$3 ext{-}\mathrm{Me}$	4	24	d	214-216	$\mathrm{C_8H_7FO_4S}$	C, H
$39e^e$	$2,4 ext{-}\mathrm{Me}_2$	5	60	\mathbf{Exptl}	217-219	$\mathrm{C_9H_9FO_4S}$	C, H, F
$39d^b$	$2,4 ext{-Cl}_2$	5	39	\bar{f}	180-182	$\mathrm{C_7H_3Cl_2FO_4S}$	C, H

^a All compds were recrystd from EtOH-H₂O. ^b Prepd by method B. ^c F. C. Schmelkes and M. Rubin, J. Amer. Chem. Soc., 66, 1631 (1944). ^d U. Kreusler, Justus Liebigs Ann. Chem., 144, 179 (1867). ^e Prepared by method A. ^f See ref 10.

gave 7.0 g (74%) of pure product, mp 143-145° (EtOH- H_2O). Anal. ($C_{10}H_{12}FNO_3S$): C, H, N.

Acid hydrolysis (6 N HCl) gave a noncrystalline aniline that was converted to the O-(p-nitrophenyl)carbamate (33c, Table II).

2,4-Dichloro-5-fluorosulfonylbenzoic Acid (39d) (Method B).—A soln of 12.6 g (61 mmoles) of 5-amino-2,4-dichlorobenzoic acid¹⁰ in 44 ml of concd HCl was diazotized with 4.5 g of NaNO₂ in 20 ml of H₂O at 0-5°. The soln was poured into 200 ml of HOAc satd with SO₂ contg 1.1 g of CuCl₂·5H₂O. After the reaction subsided (N₂ evoln), 3 vol of ice water were added. The ppt was collected, washed (H₂O), and recrystd from PhH-petr ether (30-60°); yield, 15.7 g (89%). A mixt of 7.8 g of this crude 5-chlorosulfonyl-2,4-dichlorobenzoic acid, 10 ml of dioxane, 2 ml of DMF, 1.0 ml of H₂O, and 5.5 g of finely powdered KF was stirred and refluxed for 30 min. Then the reaction mixt was poured on ice, and the ppt was collected, washed (H₂O), and recrystd from EtOH-H₂O; yield, 2.9 g (39%), mp 180-182° (see Table III).

⁽¹²⁾ A. H. de Cat and R. K. van Poucke, J. Org. Chem., 28, 3426 (1963).

⁽¹³⁾ B. R. Baker and N. M. J. Vermeulen, J. Med. Chem., 12, 79 (1969).

⁽¹⁴⁾ I. Kageyama and S. Nakanishi, Japanese Patent 16 (60) (1960); Chem. Abstr., **54**, 18985f (1960).

⁽¹⁵⁾ O. Wallach, Justus Liebigs Ann. Chem., 258, 330 (1889); 319, 99 (1901).

Ŷ	
HŅ	N R
H ₂ N N	N

Mn (dec)

R	$Method^a$		°Cb	Formulac
	A		310	$C_{19}H_{15}FN_6O_4S$
		22	290	$C_{19}H_{15}FN_6O_5S$
$m ext{-} ext{NHCOC}_6 ext{H}_3 ext{-}4 ext{-} ext{Cl-}3 ext{-} ext{SO}_2 ext{F}$	A	29	315	$\mathrm{C_{18}H_{12}ClFN_6O_4S\cdot H_2O}$
$m ext{-} ext{NHCOC}_6 ext{H}_2 ext{-}2,4 ext{-} ext{Me}_2 ext{-}5 ext{-} ext{SO}_2 ext{F}$	A	18	296	$\mathrm{C_{20}H_{17}FN_6O_4S\cdot H_2O}$
	A	20	300	$\mathrm{C_{18}H_{11}Cl_{2}FN_{6}O_{4}S}$
$m ext{-} ext{NHCOC}_6 ext{H}_3 ext{-}3 ext{-} ext{Cl-4-SO}_2 ext{F}$	\mathbf{A}	26	320	$\mathrm{C_{18}H_{12}ClFN_6O_4S}$
$m ext{-} ext{NHCOC}_6 ext{H}_3 ext{-}3 ext{-} ext{Me-4-SO}_2 ext{F}$	A	23	320	$\mathrm{C}_{19}\mathrm{H}_{15}\mathrm{FN}_6\mathrm{O}_4\mathrm{S}$
$m ext{-} ext{NHCOC}_6 ext{H}_4 ext{-} ext{Cl-}o$	A	32	320	$\mathrm{C_{18}H_{13}ClN_6O_2}$
$m ext{-} ext{NHCOC}_6 ext{H}_4 ext{-} ext{Cl-}m$	A	21	320	$\mathrm{C_{18}H_{13}ClN_6O_2\cdot H_2O}$
$m ext{-} ext{NHCOC}_6 ext{H}_3 ext{-}2,4 ext{-} ext{Cl}_2$	\mathbf{A}	28	310	$\mathrm{C_{18}H_{12}Cl_{2}N_{6}O_{2}\cdot H_{2}O}$
$m ext{-} ext{NHCONHC}_6 ext{H}_3 ext{-}3 ext{-} ext{Me-4-SO}_2 ext{F}$	В	57	258	$\mathrm{C_{19}H_{16}FN_{7}O_{4}S}$
$m ext{-} ext{NHCONHC}_6 ext{H}_3 ext{-}2 ext{-} ext{Me-5-SO}_2 ext{F}$	В	68	220	$\mathrm{C_{19}H_{16}FN_7O_4S}$
$m ext{-} ext{NHCONHC}_6 ext{H}_3 ext{-} ext{4-Cl-3-SO}_2 ext{F}$	В	67	320	$\mathrm{C_{18}H_{13}ClFN_{7}O_{4}S}$
$m ext{-} ext{NHCONHC}_6 ext{H}_2 ext{-}2,4 ext{-} ext{Me}_2 ext{-}5 ext{-} ext{SO}_2 ext{F}$	В	50	300	${ m C_{20}H_{18}FN_7O_4S\cdot 0.5H_2O}$
$p ext{-}\mathrm{O}(\mathrm{CH}_2)_2 ext{-}\mathrm{NHCOC}_6\mathrm{H}_3 ext{-}2 ext{-}\mathrm{Me-}5 ext{-}\mathrm{SO}_2\mathrm{F}$	A	27	258-261	$\mathrm{C}_{21}\mathrm{H}_{19}\mathrm{FN}_6\mathrm{O}_5\mathrm{S}$
$p ext{-}\mathrm{O}(\mathrm{CH}_2)_2 ext{-}\mathrm{NHCOC}_6\mathrm{H}_3 ext{-}2 ext{-}\mathrm{MeO} ext{-}5 ext{-}\mathrm{SO}_2\mathrm{F}$	A	32	237	$\mathrm{C_{21}H_{19}FN_6O_6S}$
$p ext{-}\mathrm{O}(\mathrm{CH}_2)_2 ext{-}\mathrm{NHCOC}_6\mathrm{H}_3 ext{-}4 ext{-}\mathrm{Cl} ext{-}3 ext{-}\mathrm{SO}_2\mathrm{F}$	\mathbf{A}	53	265	$\mathrm{C}_{20}\mathrm{H}_{16}\mathrm{ClFN}_6\mathrm{O}_5\mathrm{S}$
$p ext{-}O(CH_2)_2 ext{-}NHCOC_6H_2 ext{-}2,4 ext{-}Me_2 ext{-}5 ext{-}SO_2F$	A	40	273 - 275	$\mathrm{C}_{22}\mathrm{H}_{21}\mathrm{FN}_6\mathrm{O}_5\mathrm{S}$
p-O(CH ₂) ₂ -NHCONHC ₆ H ₃ -2-Me-5-SO ₂ F	В	36	207	$\mathrm{C}_{21}\mathrm{H}_{20}\mathrm{FN}_7\mathrm{O}_5\mathrm{S}\cdot\mathrm{H}_2\mathrm{O}$
p-O(CH ₂) ₂ -NHCONHC ₆ H ₃ -4-Cl-3-SO ₂ F	В	42	238-242	$\mathrm{C}_{20}\mathrm{H}_{17}\mathrm{ClFN}_7\mathrm{O}_5\mathrm{S}$
p-O(CH ₂) ₂ -NHCONHC ₆ H ₂ -2,4-Me ₂ -5-SO ₂ F	В	3 4	225	$\mathrm{C}_{22}\mathrm{H}_{22}\mathrm{FN}_7\mathrm{O}_5\mathrm{S}\cdot\mathrm{H}_2\mathrm{O}$
$p ext{-}O(\mathrm{CH}_2)_2\mathrm{NHCONHC}_6\mathrm{H}_3 ext{-}3 ext{-}\mathrm{Me} ext{-}4 ext{-}\mathrm{SO}_2\mathrm{F}$	В	47	241	${ m C_{21}H_{20}FN_7O_5S\cdot 0.5H_2O}$
p-O(CH ₂) ₂ NHCONHC ₆ H ₃ -3-Cl-4-SO ₂ F	В	57	229	$C_{20}H_{17}ClFN_7O_5S \cdot 0.5CH_3OCH_2CH_2OH$
$p ext{-}\mathrm{O}(\mathrm{CH}_2)_2\mathrm{NHCONHCH}_2\mathrm{C}_6\mathrm{H}_4 ext{-}\mathrm{SO}_2\mathrm{F} ext{-}p$	В	48	286	$\mathrm{C_{21}H_{20}FN_{7}O_{5}S}$
	$\begin{array}{lll} \textit{m-NHCOC}_6\textit{H}_3\text{-}2,4\text{-Me}_2\text{-}5\text{-SO}_2\textit{F} \\ \textit{m-NHCOC}_6\textit{H}_3\text{-}2,4\text{-Cl}_2\text{-}5\text{-SO}_2\textit{F} \\ \textit{m-NHCOC}_6\textit{H}_3\text{-}3\text{-Cl-4-SO}_2\textit{F} \\ \textit{m-NHCOC}_6\textit{H}_3\text{-}3\text{-Me-4-SO}_2\textit{F} \\ \textit{m-NHCOC}_6\textit{H}_3\text{-}3\text{-Me-4-SO}_2\textit{F} \\ \textit{m-NHCOC}_6\textit{H}_4\text{-Cl-}o \\ \textit{m-NHCOC}_6\textit{H}_4\text{-Cl-}m \\ \textit{m-NHCONHC}_6\textit{H}_3\text{-}2,4\text{-Cl}_2 \\ \textit{m-NHCONHC}_6\textit{H}_3\text{-}2\text{-Me-5-SO}_2\textit{F} \\ \textit{m-NHCONHC}_6\textit{H}_3\text{-}2\text{-Me-5-SO}_2\textit{F} \\ \textit{m-NHCONHC}_6\textit{H}_3\text{-}4\text{-Cl-3-SO}_2\textit{F} \\ \textit{m-NHCONHC}_6\textit{H}_3\text{-}4\text{-Cl-3-SO}_2\textit{F} \\ \textit{m-NHCONHC}_6\textit{H}_3\text{-}2\text{-Me-5-SO}_2\textit{F} \\ \textit{p-O(CH_2)}_2\text{-NHCOC}_6\textit{H}_3\text{-}2\text{-Me-5-SO}_2\textit{F} \\ \textit{p-O(CH_2)}_2\text{-NHCOC}_6\textit{H}_3\text{-}4\text{-Cl-3-SO}_2\textit{F} \\ \textit{p-O(CH_2)}_2\text{-NHCOC}_6\textit{H}_3\text{-}4\text{-Cl-3-SO}_2\textit{F} \\ \textit{p-O(CH_2)}_2\text{-NHCONHC}_6\textit{H}_3\text{-}4\text{-Cl-3-SO}_2\textit{F} \\ \textit{p-O(CH_2)}_2\text{-NHCONHC}_6\textit{H}_3\text{-}4\text{-Cl-3-SO}_2\textit{F} \\ \textit{p-O(CH_2)}_2\text{-NHCONHC}_6\textit{H}_3\text{-}3\text{-Me-4-SO}_2\textit{F} \\ \textit{p-O(CH_2)}_2\text{-NHCONHC}_6\textit{H}_3\text{-}3\text{-Cl-4-SO}_2\textit{F} \\ \textit{p-O(CH_2)}_2\text{-NHCONHC}_6\textit{H}_3\text{-}$	$\begin{array}{llllllllllllllllllllllllllllllllllll$	$\begin{array}{llllllllllllllllllllllllllllllllllll$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$

^a For method A see B. R. Baker and W. F. Wood, J. Med. Chem., 11, 650 (1968); for method B see ref 6; yields of anal. pure material. ^b All compds were recrystd from CH₃OCH₂CH₂OH-H₂O. ^c All compds were analyzed for C, H, and N. ^d See B. R. Baker and M. Cory, J. Med. Chem., 14, 805 (1971), for intermediate carbamate.

Irreversible Enzyme Inhibitors. 186.^{1,2} Irreversible Inhibitors of the C'la Component of Complement Derived from m-(Phenoxypropoxy)benzamidine by Bridging to a Terminal Sulfonyl Fluoride³

B. R. BAKER* AND MICHAEL CORY

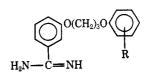
Department of Chemistry, University of California at Santa Barbara, Santa Barbara, California 93106

Received March 9, 1971

A series of 21 derivatives of m-(phenoxypropoxy)-, m-(phenoxybutoxy)-, m-(phenoxyethoxy)-, and m-(phenylbutyl)benzamidine bridged from the ortho position of the Ph moiety to a terminal SO₂F were synthesized, then investigated as irreversible inhibitors of the C'1a component of complement. The 2 most effective compds were m-[o-(2-chloro-5-fluorosulfonylphenylureido)phenoxybutoxy]benzamidine (25) and the corresponding propoxy compd (17) which showed 50% irreversible inhibition of C'1a at about 5 and 8 μM , respectively; these 2 compounds were also potent inhibitors of whole complement when assayed by inhibition of lysis of sheep red blood cells by hemolysin and complement.

The possible medicinal utility of inhibitors of serum complement for organ transplantation4 and in treatment of some arthritic states4 has been discussed previously.3,5 The serum complement system involves 11 distinct proteins for killing invading organisms or for lysis of foreign mammalian cells.4 The most powerful

(1) This work was generously supported by Grant CA-08695 from the National Cancer Institute, U. S. Public Health Service.


(2) For the previous paper in this series see B. R. Baker and H.-U. Siebeneick, J. Med. Chem., 14, 802 (1971).

(3) For the previous paper on complement see B. R. Baker and M. Cory, ibid., 14, 119 (1971).

(4) H. J. Müller-Eberhard, Advan. Immunol., 8, 1 (1968).

(5) B. R. Baker and E. H. Erickson, J. Med. Chem., 12, 408 (1969).

inhibitor of serum complement known to date³ is the benzamidine meta bridged to SO₂F (1); however, 1 is not an irreversible inhibitor of the C'1a component of complement.3 In contrast, the ortho-bridged SO₂F

1, $R = m \cdot NHCONHC_6H_4SO_2F \cdot p$ 2, $R = o\text{-NHCOC}_6H_4SO_2F\text{-}m$