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Abstract: In an efficient procedure the nucleophilic trifluorometh-
ylation and pentafluoroethylation of alkyl triflates using (trifluo-
romethyl)- and (pentafluoroethyl)trimethylsilane in the presence of
anhydrous tetramethylammonium fluoride is achieved giving 71-
80% isolated yields.
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Regioselective perfluoroalkylation and, especially, triflu-
oromethylation of organic compounds is a well estab-
lished method for synthesizing compounds applicable in
agrochemistry, pharmaceutical industry and material sci-
ences.1,2 Numerous trifluoromethylating reactions of acti-
vated organic halides (aryl, vinyl, allyl and benzyl
halides) have been reported previously.1,3 However, the
only example of trifluoromethylating non-activated alkyl
halides is the reaction of aliphatic halides using a mixture
of methyl chloro- or bromodifluoroacetate, an excess of
potassium fluoride, copper iodide and cadmium iodide at
120 °C in HMPA,4 where [CF3CuI]- is supposedly the tri-
fluoromethylating reagent. This method has several disad-
vantages, such as the use of a carcinogenic solvent, toxic
cadmium salts, or high reaction temperature. In addition,
there were difficulties in isolating the trifluoromethylated
products due to moderate yields and low conversion rates
of the starting alkyl halides. The unique properties of (per-
fluoroalkyl)trimethylsilanes as reagents for perfluoro-
alkylation of different organic and heteroatom
electrophiles are well documented.5 The formation of new
C-C bonds during the perfluoroalkylation proceeding un-
der fluoride anion catalysis, was achieved in the case of
carbonyl compounds,6 imines,7 perfluoroarenes8 and
polytrifluoromethylated aromatics,9 acyl halides10 and
carboxylic esters.11 (Trifluoromethyl)triethylsilane was
also used for in situ generation of CF3Cu in the presence
of copper halides and potassium fluoride. However, the
trifluoromethyl copper species was able to trifluorometh-
ylate only benzyl and allyl halides in 73% and 23% yield,
respectively. Moreover, this procedure cannot be extend-
ed to non-activated alkyl halides.12 Considering the good
leaving group properties of the triflate group in nucleo-
philic substitution reactions, the availability and the costs
of carbinols, alkyl triflates were chosen as the most suit-
able candidates for trifluoromethylation of sp3 hybridized

carbon derivatives. To the best of our knowledge, there
are no methods so far for substituting hydroxy groups in
alcohols directly or via their corresponding tosylates and
triflates for primary perfluoroalkyl groups. It was previ-
ously reported, that phosphitylation of alcohols with
(Et2N)2PCl followed by low temperature reaction of
CFCl3, CFBr3, CF3CCl3 or (CF3)3CBr with the intermedi-
ate diamido-O-alkylphosphites, is an effective route to in-
troduce halofluoroalkyl or perfluoro-tert.-butyl moieties
at a sp3-hybridized carbon.13 Nevertheless, it proved to be
impossible for the most synthetically useful perfluorinat-
ed primary alkyl groups, namely trifluoromethyl or pen-
tafluoroethyl, since diamido-O-alkyl phosphites do not
interact with trifluoromethyl- or pentafluoroethyl halides.
Here, we report a new facile method for the preparation of
trifluoromethylated and pentafluoroethylated alkanes
starting from easily accessible alkyl triflates, (perfluoro-
alkyl)trimethylsilane and tetramethylammonium fluoride
under very mild reaction conditions.

The treatment of primary alkyl triflates14 with an approx-
imately three-fold excess of RFSiMe3 (RF = CF3, C2F5)
and an almost stoichiometrical amount of tetramethylam-
monium fluoride15 in monoglyme at -30 °C for 2 h gave
the corresponding perfluoroalkylated AlkRF derivatives
in 71-80% isolated yields.16 The nature of the fluoride ion
source used significantly influenced this reaction. Initial-
ly, the trifluoromethylation reaction of octyl triflate 1 was
attempted in a 2:1 ratio of CF3SiMe3 and TASF in THF at
-10 °C for 1 h giving the targeted 1,1,1-trifluorononane 2,
1-fluorooctane, oct-1-ene and octan-1-ol in a 81:7:5:7 ra-
tio (GC and 19F NMR) (Scheme 1). 

Surprisingly, no trifluoromethylation was observed in the
case of CF3SiMe3/KF and alkyl triflate 3 either at 0 °C or
at room temperature. The only fluorinated products ob-
served were fluoroform, trimethylfluorosilane and potas-
sium triflate. In contrast to TASF and spray-dried KF, the
application of tetramethylammonium fluoride as a fluo-
ride anion source and performing the reaction under mild-
er reaction conditions (-30 °C, monoglyme, 2 h) afforded
the liquid crystal compound, 4-(2,2,2-trifluoroethyl)-4´-
propylbicyclohexyl 4 in 71% isolated yield. The only flu-
orinated impurity (1% mol) observed by trifluoromethyl-
ation of the triflate 3 was 4-(2,2,3,3,3-pentafluoropropyl)-
4´-propylbicyclohexyl 5 (Scheme 2).

D
ow

nl
oa

de
d 

by
: U

ni
ve

rs
ity

 o
f A

riz
on

a 
Li

br
ar

y.
 C

op
yr

ig
ht

ed
 m

at
er

ia
l.



380 D. V. Sevenard et al. LETTER

Synlett 2001, No. 3, 379–381 ISSN 0936-5214 © Thieme Stuttgart · New York

The side reaction can be rationalized by considering an in-
sertion of difluorocarbene into the Si-C bonds, formed
from the "CF3

-" containing siliconate intermediates17,18

and generated at low temperature as it has been previously
observed for CF3Cu species.1b

Surprisingly, the reaction of triflate 2 with C2F5SiMe3

gave less side-products than with CF3SiMe3. No fluorinat-
ed impurity was detected in the reaction mixture and the
isolated yield was 80% for 5. The difference in reactivity
of these (perfluoroalkyl)trimethylsilanes reagents could
be explained in terms of different thermal stability of the
hypervalent pentacoordinated silicon species generated
from RFSiMe3 and F- at low temperature. As we have re-
cently observed, the hypervalent bis(pentafluoroethyl)tri-
methyl-siliconate derived from C2F5SiMe3 and
tetramethylammonium fluoride is stable in monoglyme
until 20 °C. The corresponding CF3 containing intermedi-
ates, however, slowly decompose in monoglyme solution
already at 0 °C.17,19 The newly developed perfluoroalkyl-
ation protocol allows the exclusion of carcinogenic sol-
vents or toxic cadmium salts. The trifluoromethylated
products can be prepared under mild reaction conditions.

In summary, we have developed an efficient and general
synthetic route to primary trifluoro- and pentafluoroal-
kanes by treating alkyl triflates with an excess of (perflu-
oroalkyl)trimethylsilane and almost stoichiometric
amounts of anhydrous tetramethylammonium fluoride.

The usefulness of this approach was demonstrated on a
preparative scale by synthesizing the liquid crystal mole-
cules 4 and 5. Further studies of the reactive species na-
ture, scope and applicability of this method to secondary
and tertiary alcohols are presently under investigation in
our laboratories.
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Scheme 1

Scheme 2 Synthesis and mesophase sequences of the liquid crystals 4 and 5. (The phase transition temperatures are cited in °C;
C = crystalline, SB = smectic B, SG = smectic G, I = isotropic)
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