October 1983 Communications 833 The structure of the β -lactams 5 were confirmed by their I.R. and ¹H-N.M.R. spectra, and microanalyses (Table). The stereochemistry at C-3 and C-4 of the β -lactam ring was deduced from the coupling constants of the protons attached to these carbon atoms in their ¹H-N.M.R. spectra. Compound 5d has the *cis*-configuration (J=5 Hz) whereas 5a, 5b, and 5c are *trans*-isomers (J=2 Hz). No *cis/trans* isomeric mixture was observed in the ¹H-N.M.R. spectra of the products Since the advent of antibiotics exhibiting broad spectrum antibacterial activities, such as cephams and oxacephams, intensive synthetic studies have appeared in the literature. Tricyclic β -lactams have been synthesized¹ from azidoacetyl chloride and cyclic imines and cephams from substituted acetyl chlorides and dihydrothiazine derivatives⁴. The present procedure to prepare β -lactam compounds was then extended to the synthesis of some tricyclic β -lactams 7, cephams 9, and oxacephams 11. When a mixture of a 3,4-dihydroisoquinoline (6), which was utilized as the imine component, a mixed anhydride 3, and triethylamine in anhydrous dichloromethane was stirred at room temperature for 48 h, the corresponding β -lactam compound 7 was obtained. Similar treatment of 2-phenyl-5,6-dihydro-4H-1,3-thiazine (8) and -oxazine (10) with 3 afforded β -lactams 9 and 11, respectively. Spectral data and microanalyses support the structure of the products 7, 9, and 11 (Table). The present method provides a simple and convenient preparation of the β -lactams under mild conditions. Further studies on the application of the method to organic synthesis are in progress. The 3,4-dihydroisoquinolines 6a⁵, 6b⁶, 6c⁶, 2-phenyl-5,6-dihydro-4*H*-1,3-thiazine (8)⁷ and 2-phenyl-5,6-dihydro-4*H*-1,3-oxazine (10)⁸ were prepared according to literature procedures. ## β -Lactams 5, Tricyclic β -Lactams 7, Cephams 9, and Oxacephams 11; General Procedure: A solution of the substituted acetic acid 1 (1 mmol), p-toluenesulfonyl chloride 2 (1 mmol), and triethylamine (2 mmol) in anhydrous dichloromethane (5 ml) is stirred at room temperature for 10 min. To this solution is added the imine 4 or 3,4-dihydroisoquinoline 6 or 1,3-thiazine 8 or 1,3-oxazine 10 (1 mmol) in anhydrous dichloromethane (2 ml). The reaction mixture is stirred at room temperature for 48 h, washed with 5% sodium hydrogen carbonate solution (3 ml), water (3 ml), and dried with anhydrous sodium sulfate. Removal of the solvent and subsequent trituration with ethanol under ice-cooling gives crude crystals, which on recrystallization from dichloromethane/ethanol afford the pure product (Table). ## A One-Pot Synthesis of \(\beta\)-Lactams Muneharu MIYAKE, Norio TOKUTAKE*, Makoto KIRISAWA Department of Pharmacy, College of Science and Technology, Nihon University, 1-8, Kandasurugadai, Chiyoda-ku, Tokyo 101, Japan The synthesis of β -lactams has been achieved by a variety of methods, among which the acid chloride/imine method has been frequently employed. Recently, the synthesis of β -lactams by the reaction of β -amino acids with methanesulfonyl chloride in chloroform/aqueous alkali solution in the presence of a phase transfer catalyst has been reported². In connection with an earlier report³ dealing with the reaction of acid anhydrides with imines, the present work was undertaken to synthesize some β -lactams by the one-pot reaction of mixed acid anhydrides with imines in the presence of triethylamine. The mixed anhydrides 3, synthetic equivalents to acid chlorides, were prepared from phthalimido- or p-chlorophenoxyacetic acids 1 and p-toluenesulfonyl chloride (2) in the presence of triethylamine. Under the mild reaction conditions employed, the *in situ* formed 3 react with imines 4 to give corresponding monocyclic β -lactams 5 in moderate yields. Table. β -Lactams 5, Tricyclic β -Lactams 7, Cephams 9, and Oxacephams 11 prepared | Product
No. R ¹ | \mathbb{R}^2 | R ³ | Yield
[%] | m.p. ^a
[°C] | Molecular
formula ^b | 1.R. (KBr) $v_{\text{Cood}} \text{ [cm}^{-1}\text{]}$ | ¹ H-N.M.R. (CDCl ₃)
δ [ppm] | |--|-------------------|--------------------|--------------|---------------------------|---|---|---| | 5 a N- | CI — | cı -{_} | 48 | 217-218° | C ₂₃ H ₁₄ Cl ₂ N ₂ O ₃ (437.3) | 1710, 1760,
1780 | 5.23 (d, 1 H, J=2 Hz);
5.33 (d, 1 H, J=2 Hz);
7.22-7.81 (m, 12 H) | | 5b N- | | CH ₂ | 52 | 262-262.5° | $\begin{array}{c} C_{26}H_{20}N_2O_5\\ (440.4)\end{array}$ | 1700, 1720,
1765 | 1.38 (t, 3 H, J=7 Hz);
4.35 (q, 2 H, J=7 Hz);
5.32 (d, 1 H, J=2 Hz);
5.48 (d, 1 H, J=2 Hz); | | 5 c CI - √ | | | 41 | 124-125° | C ₂₂ H ₁₈ CINO ₂ (363.8) | 1750 | 6.95-8.45 (m, 8 H)
2.42 (s, 3 H); 5.11 (d, 1 H,
J=2 Hz); 5.2 (d, 1 H,
J=2 Hz); 6.9-7.5 (m,
13 H) | | 5d Cl √ 0− | н₃со-√_у_ | н ₃ с-{ | 41 | 157-158° | C ₂₃ H ₂₀ CINO ₃
(393.9) | 1740 | 2.25 (s, 3 H); 3.74 (s, 3 H); 5.29 (d, 1 H, <i>J</i> = 5 Hz); 5.37 (d, 1 H, <i>J</i> = 5 Hz); 6.62–7.41 (m, 12 H) | | 7a cl-(| | | 49 | 124125° | C ₂₃ H ₁₈ CINO ₂ (375.8) | 1750 | 2.5-3.0 (m, 2H); 3.55-
3.98 (m, 2H); 5.42 (s,
1H); 6.65-7.51 (m,
13 H) | | 7b N- | O ₂ N- | _ | 53 | 261-262° | $C_{25}H_{17}N_3O_5$ (439.4) | 1710, 1760,
1780° | 2.7-3.0 (m, 2 H); 3.75-
4.15 (m, 2 H); 5.68 (s,
1 H); 7.08-8.23 (m,
12 H) | | 0
7c Cl-⟨_}O− | | - | 55 | 135-136° | C ₂₃ H ₁₇ ClN ₂ O ₄ (420.8) | 1760° | 2.5-3.15 (m, 2H); 3.6-4.0 (m, 2H); 5.52 (s, 1H); 6.75-8.36 (m, 12H) | | 9a CI- | | _ | 39 | 157158° | C ₁₈ H ₁₆ CINOS
(329.8) | 1760 | 1.6-2.15 (m, 2 H); 2.5-
3.39 (m, 3 H); 4.0-4.5 (m,
1 H); 4.31 (s, 1 H); 6.79-
7.49 (m, 9 H) | | 9b CI | _ | _ | 46 | 121121.5° | C ₁₈ H ₁₆ NO ₂ S
(345.8) | 1780 | 1.6-2.15 (m, 2 H); 2.55-
3.3 (m, 3 H); 3.85-4.4 (m,
1H); 5.27 (s, 1 H); 6.5-
7.71 (m, 9 H) | | 9c N- | _ | | 64 | 208-209° | C ₂₀ H ₁₅ N ₃ O ₅ S
(409.4) | 1712, 1762,
1785 ^d | 1.65-2.2 (m, 2H); 2.5-
2.9 (m, 2H); 3.05-3.6 (m,
1H); 4.1-4.6 (m, 1H);
5.5 (s, 1H); 7.0-8.2 (m,
8 H) | | 11a | | - | 44 | 239-240° | $C_{20}H_{16}N_2O_4$ (348.3) | 1710, 1760,
1790 | 1.25-2.25 (m, 2H); 3.0-4.32 (m, 4H); 5.35 (s, 1H); 7.14-7.72 (m, 9H) | | 11b ci———————————————————————————————————— | | - | 43 | 138~139° | C ₁₈ H ₁₆ ClNO ₃
(329.8) | 1760 | 1.2-2.69 (m, 3 H); 2.7-
3.5 (m, 1 H); 3.52-4.38 (m, 2 H); 5.25 (s, 1 H); 6.5-7.68 (m, 9 H) | | 11c N- | _ | - | 51 | 217~218° | C ₂₀ H ₁₅ N ₃ O ₆ (393.3) | 1712, 1780,
1795 ^d | 1.05-2.2 (m, 2 H); 2.4-
2.7 (m, 1 H); 2.9-4.25 (m, 3 H); 5.25 (s, 1 H); 6.95-
8.45 (m, 8 H)° | Not corrected. Satisfactory microanalyses obtained: C ± 0.30 , H ± 0.18 , N ± 0.30 . $v_{\rm NO}=1520$ cm $^{-1}$. $v_{NO_2} = 1540 \text{ cm}^{-1}$. ^e Measured in DMSO-d₆. Received: March 23, 1983 A. K. Bose, B. Anjaneyulu, S. K. Bhattacharya, M. S. Manhas, Tetrahedron 23, 4769 (1967). ² Y. Watanabe, T. Mukaiyama, Chem. Lett. 1981, 443. ³ M. Miyake, M. Kirisawa, N. Tokutake, Synthesis 1982, 1053. ⁴ A. K. Bose, V. Sudarsanam, B. Anjaneyulu, M. S. Manhas, Tetrahedron 25, 1191 (1969). Downloaded by: Rutgers University. Copyrighted material. - ⁵ M. Lora-Tamayo, R. Madronero, Guillermo, Chem. Ber. 93, 289 - (1960). 6 V. M. Rodionov, E. V. Yavorskaya, J. Gen. Chem. U.S.S.R. 11, 446 - V. M. Rodionov, E. V. Yavorskaya, J. Gen. Chem. U.S.S.R. 13, 491 (1943). G. Pinkus, *Chem. Ber.* **26**, 1077 (1893). J. H. Boyer, J. Hamer, *J. Am. Chem. Soc.* **77**, 951 (1955).