October 1983 Communications 833

The structure of the β -lactams 5 were confirmed by their I.R. and ¹H-N.M.R. spectra, and microanalyses (Table). The stereochemistry at C-3 and C-4 of the β -lactam ring was deduced from the coupling constants of the protons attached to these carbon atoms in their ¹H-N.M.R. spectra. Compound 5d has the *cis*-configuration (J=5 Hz) whereas 5a, 5b, and 5c are *trans*-isomers (J=2 Hz). No *cis/trans* isomeric mixture was observed in the ¹H-N.M.R. spectra of the products

Since the advent of antibiotics exhibiting broad spectrum antibacterial activities, such as cephams and oxacephams, intensive synthetic studies have appeared in the literature. Tricyclic β -lactams have been synthesized¹ from azidoacetyl chloride and cyclic imines and cephams from substituted acetyl chlorides and dihydrothiazine derivatives⁴. The present procedure to prepare β -lactam compounds was then extended to the synthesis of some tricyclic β -lactams 7, cephams 9, and oxacephams 11.

When a mixture of a 3,4-dihydroisoquinoline (6), which was utilized as the imine component, a mixed anhydride 3, and triethylamine in anhydrous dichloromethane was stirred at room temperature for 48 h, the corresponding β -lactam compound 7 was obtained. Similar treatment of 2-phenyl-5,6-dihydro-4H-1,3-thiazine (8) and -oxazine (10) with 3 afforded β -lactams 9 and 11, respectively. Spectral data and microanalyses support the structure of the products 7, 9, and 11 (Table).

The present method provides a simple and convenient preparation of the β -lactams under mild conditions. Further studies on the application of the method to organic synthesis are in progress.

The 3,4-dihydroisoquinolines 6a⁵, 6b⁶, 6c⁶, 2-phenyl-5,6-dihydro-4*H*-1,3-thiazine (8)⁷ and 2-phenyl-5,6-dihydro-4*H*-1,3-oxazine (10)⁸ were prepared according to literature procedures.

β -Lactams 5, Tricyclic β -Lactams 7, Cephams 9, and Oxacephams 11; General Procedure:

A solution of the substituted acetic acid 1 (1 mmol), p-toluenesulfonyl chloride 2 (1 mmol), and triethylamine (2 mmol) in anhydrous dichloromethane (5 ml) is stirred at room temperature for 10 min. To this solution is added the imine 4 or 3,4-dihydroisoquinoline 6 or 1,3-thiazine 8 or 1,3-oxazine 10 (1 mmol) in anhydrous dichloromethane (2 ml). The reaction mixture is stirred at room temperature for 48 h, washed with 5% sodium hydrogen carbonate solution (3 ml), water (3 ml), and dried with anhydrous sodium sulfate. Removal of the solvent and subsequent trituration with ethanol under ice-cooling gives crude crystals, which on recrystallization from dichloromethane/ethanol afford the pure product (Table).

A One-Pot Synthesis of \(\beta\)-Lactams

Muneharu MIYAKE, Norio TOKUTAKE*, Makoto KIRISAWA

Department of Pharmacy, College of Science and Technology, Nihon University, 1-8, Kandasurugadai, Chiyoda-ku, Tokyo 101, Japan

The synthesis of β -lactams has been achieved by a variety of methods, among which the acid chloride/imine method has been frequently employed. Recently, the synthesis of β -lactams by the reaction of β -amino acids with methanesulfonyl chloride in chloroform/aqueous alkali solution in the presence of a phase transfer catalyst has been reported².

In connection with an earlier report³ dealing with the reaction of acid anhydrides with imines, the present work was undertaken to synthesize some β -lactams by the one-pot reaction of mixed acid anhydrides with imines in the presence of triethylamine. The mixed anhydrides 3, synthetic equivalents to acid chlorides, were prepared from phthalimido- or p-chlorophenoxyacetic acids 1 and p-toluenesulfonyl chloride (2) in the presence of triethylamine. Under the mild reaction conditions employed, the *in situ* formed 3 react with imines 4 to give corresponding monocyclic β -lactams 5 in moderate yields.

Table. β -Lactams 5, Tricyclic β -Lactams 7, Cephams 9, and Oxacephams 11 prepared

Product No. R ¹	\mathbb{R}^2	R ³	Yield [%]	m.p. ^a [°C]	Molecular formula ^b	1.R. (KBr) $v_{\text{Cood}} \text{ [cm}^{-1}\text{]}$	¹ H-N.M.R. (CDCl ₃) δ [ppm]
5 a N-	CI —	cı -{_}	48	217-218°	C ₂₃ H ₁₄ Cl ₂ N ₂ O ₃ (437.3)	1710, 1760, 1780	5.23 (d, 1 H, J=2 Hz); 5.33 (d, 1 H, J=2 Hz); 7.22-7.81 (m, 12 H)
5b N-		CH ₂	52	262-262.5°	$\begin{array}{c} C_{26}H_{20}N_2O_5\\ (440.4)\end{array}$	1700, 1720, 1765	1.38 (t, 3 H, J=7 Hz); 4.35 (q, 2 H, J=7 Hz); 5.32 (d, 1 H, J=2 Hz); 5.48 (d, 1 H, J=2 Hz);
5 c CI - √			41	124-125°	C ₂₂ H ₁₈ CINO ₂ (363.8)	1750	6.95-8.45 (m, 8 H) 2.42 (s, 3 H); 5.11 (d, 1 H, J=2 Hz); 5.2 (d, 1 H, J=2 Hz); 6.9-7.5 (m, 13 H)
5d Cl √ 0−	н₃со-√_у_	н ₃ с-{	41	157-158°	C ₂₃ H ₂₀ CINO ₃ (393.9)	1740	2.25 (s, 3 H); 3.74 (s, 3 H); 5.29 (d, 1 H, <i>J</i> = 5 Hz); 5.37 (d, 1 H, <i>J</i> = 5 Hz); 6.62–7.41 (m, 12 H)
7a cl-(49	124125°	C ₂₃ H ₁₈ CINO ₂ (375.8)	1750	2.5-3.0 (m, 2H); 3.55- 3.98 (m, 2H); 5.42 (s, 1H); 6.65-7.51 (m, 13 H)
7b N-	O ₂ N-	_	53	261-262°	$C_{25}H_{17}N_3O_5$ (439.4)	1710, 1760, 1780°	2.7-3.0 (m, 2 H); 3.75- 4.15 (m, 2 H); 5.68 (s, 1 H); 7.08-8.23 (m, 12 H)
0 7c Cl-⟨_}O−		-	55	135-136°	C ₂₃ H ₁₇ ClN ₂ O ₄ (420.8)	1760°	2.5-3.15 (m, 2H); 3.6-4.0 (m, 2H); 5.52 (s, 1H); 6.75-8.36 (m, 12H)
9a CI-		_	39	157158°	C ₁₈ H ₁₆ CINOS (329.8)	1760	1.6-2.15 (m, 2 H); 2.5- 3.39 (m, 3 H); 4.0-4.5 (m, 1 H); 4.31 (s, 1 H); 6.79- 7.49 (m, 9 H)
9b CI	_	_	46	121121.5°	C ₁₈ H ₁₆ NO ₂ S (345.8)	1780	1.6-2.15 (m, 2 H); 2.55- 3.3 (m, 3 H); 3.85-4.4 (m, 1H); 5.27 (s, 1 H); 6.5- 7.71 (m, 9 H)
9c N-	_		64	208-209°	C ₂₀ H ₁₅ N ₃ O ₅ S (409.4)	1712, 1762, 1785 ^d	1.65-2.2 (m, 2H); 2.5- 2.9 (m, 2H); 3.05-3.6 (m, 1H); 4.1-4.6 (m, 1H); 5.5 (s, 1H); 7.0-8.2 (m, 8 H)
11a		-	44	239-240°	$C_{20}H_{16}N_2O_4$ (348.3)	1710, 1760, 1790	1.25-2.25 (m, 2H); 3.0-4.32 (m, 4H); 5.35 (s, 1H); 7.14-7.72 (m, 9H)
11b ci————————————————————————————————————		-	43	138~139°	C ₁₈ H ₁₆ ClNO ₃ (329.8)	1760	1.2-2.69 (m, 3 H); 2.7- 3.5 (m, 1 H); 3.52-4.38 (m, 2 H); 5.25 (s, 1 H); 6.5-7.68 (m, 9 H)
11c N-	_	-	51	217~218°	C ₂₀ H ₁₅ N ₃ O ₆ (393.3)	1712, 1780, 1795 ^d	1.05-2.2 (m, 2 H); 2.4- 2.7 (m, 1 H); 2.9-4.25 (m, 3 H); 5.25 (s, 1 H); 6.95- 8.45 (m, 8 H)°

Not corrected.

Satisfactory microanalyses obtained: C ± 0.30 , H ± 0.18 , N ± 0.30 . $v_{\rm NO}=1520$ cm $^{-1}$.

 $v_{NO_2} = 1540 \text{ cm}^{-1}$.

^e Measured in DMSO-d₆.

Received: March 23, 1983

A. K. Bose, B. Anjaneyulu, S. K. Bhattacharya, M. S. Manhas, Tetrahedron 23, 4769 (1967).

² Y. Watanabe, T. Mukaiyama, Chem. Lett. 1981, 443.

³ M. Miyake, M. Kirisawa, N. Tokutake, Synthesis 1982, 1053.

⁴ A. K. Bose, V. Sudarsanam, B. Anjaneyulu, M. S. Manhas, Tetrahedron 25, 1191 (1969).

Downloaded by: Rutgers University. Copyrighted material.

- ⁵ M. Lora-Tamayo, R. Madronero, Guillermo, Chem. Ber. 93, 289
- (1960).

 6 V. M. Rodionov, E. V. Yavorskaya, J. Gen. Chem. U.S.S.R. 11, 446
- V. M. Rodionov, E. V. Yavorskaya, J. Gen. Chem. U.S.S.R. 13, 491 (1943).

 G. Pinkus, *Chem. Ber.* **26**, 1077 (1893).

 J. H. Boyer, J. Hamer, *J. Am. Chem. Soc.* **77**, 951 (1955).