

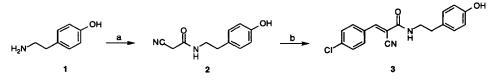
Bioorganic & Medicinal Chemistry Letters 8 (1998) 199-200

BIOORGANIC & MEDICINAL CHEMISTRY LETTERS

## *N-*(2-(4-HYDROXYPHENYL)ETHYL)-4-CHLOROCINNAMIDE: A NOVEL ANTAGONIST AT THE 1A/2B NMDA RECEPTOR SUBTYPE

Amir P. Tamiz,<sup>a</sup> Edward R. Whittemore,<sup>b</sup> Robert M. Schelkun,<sup>c</sup> Po-Wai Yuen,<sup>c</sup> Richard M. Woodward,<sup>b</sup> Sui-Xiong Cai,<sup>b</sup> Eckard Weber <sup>b</sup> and John F. W. Keana <sup>a,b,\*</sup>

<sup>a</sup>Department of Chemistry, University of Oregon, Eugene, Oregon 97403 <sup>b</sup>CoCensys Inc., 213 Technology Drive, Irvine, California 92618 <sup>c</sup>Parke-Davis, 2800 Plymouth Road, Ann Arbor, Michigan 48106


Received 25 October 1997; accepted 3 December 1997

Abstract: A series of N-(2-phenethyl)cinnamides was synthesized and assayed for antagonism at three N-methyl-D-asparate (NMDA) receptor subtypes (NR1A/2A-C). N-(2-(4-hydroxyphenyl)ethyl)-4-chlorocinnamide (6) was identified as a highly potent and selective antagonist of the NR1A/2B subtype. © 1998 Elsevier Science Ltd. All rights reserved.

Overstimulation of NMDA receptors play a central role in the process of excitotoxicity, a pathological phenomenon triggered during ischemic stroke, head trauma, and other neurodegenerative conditions.<sup>1</sup> Inhibition of NMDA receptors attenuates excitotoxicity and is neuroprotective.<sup>2</sup> Unfortunately, many broad spectrum NMDA receptor antagonists have behavioral and neurotoxic side effects that limit their clinical utility.<sup>1,2</sup> Studies at the molecular level indicate that NMDA receptors are heterooligomeric assemblies of at least two types of polypeptide subunits: NR1, found in eight isoforms, and NR2, found as four distinct subtypes (NR2A-NR2D).<sup>3,4</sup> By designing subtype-selective NMDA receptor antagonists we reasoned that it may be possible to find neuroprotectants with improved side effect profiles. As part of a screening effort to identify novel subtype-selective NMDA antagonists, we found that *N*-(2-(4-hydroxyphenyl)ethyl)-4-chlorocinnamide (6) is a potent and selective antagonist at NR1A/2B receptors. In order to develop a structure–activity relationship for this class of antagonist, a series of substituted cinnamides were prepared and assayed for inhibition of three putative subtypes of NMDA receptors; NR1A in combination with either 2A, 2B, or 2C.

Cinnamide synthesis<sup>5</sup> was achieved by three general methods. Method 1 was the reaction of a cinnamoyl chloride, prepared from the corresponding cinnamic acid treated with SOCl<sub>2</sub>, with a phenethylamine in the presence of triethylamine to yield **4–8** (55–70%). Method 2 was the direct reaction of 4-hydroxycinnamic acid with a phenylethylamine in the presence of 1,3-dicyclohexylcarbodiimide and 1-hydroxybenzotriazole in DMF to yield **9**, **10**, and **11** (80–95%). For the preparation of **11**, the requisite  $\beta$ -cyano-4-chlorocinnamic acid was prepared by the general method of Dean and Blum.<sup>6</sup> Method 3 is depicted in Scheme 1. Briefly, treatment of tyramine **1** with ethyl cyanoacetate resulted in the intermediate cyanoamide **2**. Condensation of **2** with 4-chlorobenzaldehyde in the presence of a catalytic amount of piperidine yielded **3** (28% overall).

Scheme 1



(a) NCCH<sub>2</sub>CO<sub>2</sub>Et, DMF, 110 °C, 4 h; (b) p-ClC<sub>6</sub>H<sub>4</sub>CHO, piperidine (cat.), EtOH, reflux 3 h

0960-894X/98/\$19.00 © 1998 Elsevier Science Ltd. All rights reserved. PII: S0960-894X(97)10215-3

Potencies for inhibition of NR1A/2A-C are listed in Table 1. The compounds generally exhibit selectivity for NR1A/2B over NR1A/2A and NR1A/2C. The exceptions are 5 and 7, which have weak activity at all three subtypes. The most potent compound at NR1A/2B in this series is 6, which possesses a 4-Cl substituent in the cinnamoyl moiety and a 4-OH in the phenylethylamine portion. Removal of the chlorine atom (4) reduces potency by fourfold. Removal of the hydroxyl group (5) renders the compound inactive, as does substituting a chlorine atom for the hydroxyl group (7). Moving the hydroxyl group of  $\mathbf{6}$  from the para position to the meta position (8), or substituting the chlorine atom of 6 with a hydroxyl group (9) also reduces potency. Interestingly, amide 10, in which the position of the chlorine atom and the hydroxyl group are reversed, has a potency comparable to that of 6. This suggests that the molecules are able to interact with the receptor pocket from either orientation. Cyano substituted cinnamides 3 and 11 demonstrated reduced potencies relative to 6.

Table 1. Functional Antagonism of Substituted Cinnamides at NMDA Receptor Subtypes

| , I    | 2 Q     |     | $\square$ | _R₄             |
|--------|---------|-----|-----------|-----------------|
| $\int$ | Ƴ<br>R₃ | Ϋ́Η |           | `R <sub>5</sub> |
| R, ~~~ |         |     |           |                 |

| Compound # | R <sub>1</sub> | R <sub>2</sub> | R <sub>3</sub> | R <sub>4</sub> | R5 |          | IC <sub>50</sub> (μM) |              |
|------------|----------------|----------------|----------------|----------------|----|----------|-----------------------|--------------|
|            |                |                |                |                |    | 1A/2A_   | 1A/2B                 | 1A/2C        |
| 4          | H              | Н              | Н              | OH             | Н  | >300     | 0.68 ± 0.07           | >300         |
| 5          | Cl             | н              | н              | Н              | н  | >300     | >300                  | >300         |
| 6          | Cl             | н              | н              | OH             | н  | >300     | $0.17 \pm 0.02$       | >300         |
| 7          | Cl             | н              | н              | Cl             | н  | 160 ± 70 | >300                  | >300         |
| 8          | Cl             | н              | н              | Н              | OH | >300     | 7.4 ± 2.0             | 175 ± 39     |
| 9          | ОН             | н              | н              | OH             | Н  | >300     | 21 ± 5.5              | $200 \pm 14$ |
| 10         | OH             | Н              | Н              | Cl             | н  | >300     | $0.33 \pm 0.07$       | >300         |
| 3          | Cl             | н              | CN             | OH             | н  | 78 ± 13  | $3.4 \pm 1.6$         | 105 ± 15     |
| 11         | Cl             | CN             | н              | OH             | н  | >300_    | 9.0 ± 1.1             | >300         |

IC50 values (±S.E.M) were determined by electrical assays in Xenopus oocytes expressing the NMDA receptor combinations.<sup>7</sup> Values were examined from 3 oocytes for NR 1A/2B and 2 oocytes for the other subunits combinations.

Acknowledgment: Financial support to University of Oregon was provided by CoCensys Inc.

## **References and Notes:**

- 1. Muir, K.; Lees, K. R. Stroke 1995, 26, 503.
- 2. Leeson, P. D.; Iversen, L. L. J. Med. Chem. 1994, 37, 4053.
- 3. Sugihara, H.; Moriyoshi, K.; Ishii, T.; Masu, M.; Nakanishi, S.;. Biochem. Biophys. Res. Commun. 1992, 185, 826.
- 4. Monyer, H.; Sprengel, R.; Schoepfer, R.; Herb, A.; Higuchi, M.; Lomeli, H.; Burnashev, N.; Sakmann, B.; Seeburg, P. H. Science (Washington) 1992, 256, 1217.
- 5. The <sup>1</sup>H NMR spectra for all intermediates and final compounds were consistent with the assigned structures. All final compounds gave satisfactory C, H, N analyses.
- Dean, W. D.; Blum, D. M. J. Org. Chem. 1993, 58, 7916.
  Ilyin, V. I.; Whittemore, E. R.; Guastella, J.; Weber, E.; Woodward, R. M. Mol. Pharmacol. 1996, 50, 1541.