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Abstract: Iron-catalyzed cross-coupling of Grignard reagents
(RMgX) with (E)- and (Z)-enol tosylates proceeded smoothly to
give a variety of the corresponding (E)- and (Z)-trisubstituted a,b-
unsaturated methyl esters (total 30 examples; 55–98% yield). The
simple, mild, stereoretentive method utilized iron(III) chloride
(FeCl3), iron(III) acetylacetonate [Fe(acac)3], and iron(III)
tris(dibenzylmethane) [Fe(dbm)3]. The (E)- and (Z)-enol tosylates
were readily prepared by the reported stereocomplementary tosyla-
tion method from methyl b-keto esters or a-formyl esters. Methyl a-
formyl esters were obtained via a practical and robust TiCl4–Et3N-
mediated a-formylation of methyl esters with methyl formate.

Key words: cross-coupling, iron, stereoselective synthesis, enol
tosylate, a,b-unsaturated ester

Various stereoretentive cross-coupling reactions using
(E)- and (Z)-vinyl halides and their derivatives have been
developed over the past decades for the synthesis of natu-
ral products and pharmaceuticals due to their advanta-
geous features, such as the wide range of possible
substrates and catalysts, mild reaction conditions, func-
tional compatibility, etc. Among a number of investiga-
tions, iron-catalyzed cross-couplings have recently
attracted considerable attention due to their low cost and
toxicity, and environmentally benign catalysis.1

Stereocontrolled preparation of (E)- and (Z)-a,b-unsatur-
ated esters is a major topic in organic synthesis, because
these compounds serve as useful structural scaffolds for
various (E)- and (Z)-stereodefined olefins. The stereose-
lective Horner–Wadsworth–Emmons reaction,2 dehydra-
tion of b-hydroxy esters,3 Michael reaction4 or
hydroxylation–alkylation using a-alkynyl esters5 are rep-
resentative methods.

Accordingly, there is a high demand for development of
efficient methods to improve stereo-, regio-, and
chemoselectivity and substrate generality. The (E)- and
(Z)-stereodefined enol sulfonates derived from b-keto and
a-formyl esters are promising stereoretentive cross-cou-
pling partners. Enol triflate analogues are popularly used
for this purpose,6 but they have two drawbacks, particular-
ly for process chemistry, instability, and high cost. We re-
cently reported a couple of practical stereocomplementary
preparations of various b-oxo ester enol p-toluene-
sulfonates (tosylates), followed by stereoretentive

Negishi, Sonogashira, and Suzuki–Miyaura cross-cou-
plings to give a number of b,b- or a,b-disubstituted (E)-
and (Z)-a,b-unsaturated esters with high substrate gener-
ality (total 54 examples).7

The key issue of these two methods lies in the E- and Z-
stereocomplementary enol tosylations utilizing an effi-
cient TsCl-N-methylimidazole (NMI) scaffold8 and a ste-
reoretentive cross-coupling protocol using Pd catalysis.
As a novel extension, we present herein an efficient
FeCl3-, Fe(acac)3 [iron(III) acetylacetonate]-, or Fe(dbm)3

[(iron(III) tris(dibenzylmethane)]-catalyzed cross-cou-
pling using (E)- and (Z)-enol tosylates as outlined in
Scheme 1. The upper and lower figures depict the reaction
sequences starting from methyl b-keto esters and a-
formyl esters, respectively. Despite the usefulness of iron-
catalyzed cross-coupling, to our knowledge, there are no
methods with substrate generality for b-oxo enol sul-
fonate partners.

The initial trial was guided by the methylation of a pair of
(E)- and (Z)-enol tosylates [(E)-1a and (Z)-1a]7a derived
from methyl 3-oxononadecanate using MeMgBr to give
respective (Z)-2a and (E)-2a a,b-unsaturated esters
(Table 1, entries 1, 2; notice: due to the sequence rule, a
reverse configuration of E and Z of 2a–g is indicated for
this stereoretentive reaction). Among several commer-
cially available Fe(III) salts screened, FeCl3 and Fe(dbm)3

afforded the best results under mild conditions (THF sol-
vent, 0–5 °C, 2 h).9 This simple and accessible, but suc-
cessful result prompted us to investigate the substrate
generality for the present cross-coupling reaction using
various (E)- and (Z)-enol tosylates [(E)-1 and (Z)-1] de-
rived from b-keto esters.

Table 1 lists the successful results for preparing stereode-
fined b,b-disubstituted a,b-unsaturated esters [(Z)-2 and
(E)-2] and the salient features are as follows. (i) All exam-
ples examined produced good to excellent yield (18 exam-
ples; 55–98% yield) under identical conditions (THF
solvent, 0–5 °C, 2 h). (ii) Nearly complete stereoretention
was obtained for both E- and Z-substrates. (iii) With re-
gard to the yield, the FeCl3 catalyst worked best with (E)-
enol tosylates (E)-1, whereas the Fe(dbm)3 catalyst
worked best with (Z)-enol tosylates (Z)-1. (iv) Fe(acac)3

(acac = acetylacetonyl) with the NMP co-solvent method
by Cahiez’s group10 was effective for EtMgBr and
BuMgBr nucleophiles (entries 3, 5). (v) A terminal double
bond, chloro and ester functional groups were compatible
(entries 7–12). (vi) Slight E → Z isomerization occurred
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in two cases (entries 14 and 17) and one considerable Z →
E isomerization unfortunately took place (entry 18).

Next, we turned our attention on the reaction using (E)-
and (Z)-enol tosylates [(E)-3 and (Z)-3] derived from
methyl a-formyl esters. As described in our earlier re-
port,7b a-formylation of various esters using TiCl4–
HCO2Me reagent (a kind of Ti-Claisen condensation) is
efficient due to its higher yield, accessibility, and repro-
ducibility, compared with the traditional method using
base reagents (NaOR, NaH, etc.).11 Utilizing this Ti-
Claisen condensation and subsequent stereocomplemen-
tary enol tosylation, various stereodefined enol tosylates
[(E)-3 and (Z)-3] were prepared.7b

With these substrates [(E)-3 and (Z)-3] in our hands, the
present iron-catalyzed cross-coupling protocol was ap-
plied. Table 2 lists the successful results for preparing ste-

reodefined a,b-disubstituted a,b-unsaturated esters [(E)-4
and (Z)-4] and the salient features are as follows. (i) A lit-
tle contrary to the case using (E)-1 and (Z)-1, Fe(dbm)3 in-
stead of FeCl3 produced better result for both substrates
[(E)-3 and (Z)-3]. (ii) All reactions examined produced
moderate to excellent yield (12 examples; 58–98%) under
identical conditions (THF solvent, 0–5 °C, 2 h). (iii) The
reaction also proceeded with both nearly complete E- and
Z-stereoretention. (iv) It is noteworthy that the reaction
velocity was consistently higher than that using (E)-1 and
(Z)-1, whose tendency is apparently contrary to the report-
ed methods for Negishi, Sonogashira, and Suzuki–
Miyaura couplings.7 (v) In three cases, slight Z → E
isomerization occurred (entries 2, 6, and 12).

Scheme 1 Stereocomplementary preparation of (E)- and (Z)-a,b-unsaturated methyl esters utilizing iron-catalyzed cross-couplings of
R3MgBr with (E)- and (Z)-enol tosylates
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Table 1 Stereocomplementary Iron-Catalyzed Cross-Coupling of (E)-and (Z)-Enol Tosylates 1 Derived from Methyl b-Keto Esters

Entry Enol tosylate R3 Product Yield (%)a

1
2

(E)-1a
(Z)-1a

Me
(Z)-2a
(E)-2a

94
98

3
4

(E)-1a
(Z)-1a

Et
(Z)-2b
(E)-2b

78b

76

5
6

(E)-1a
(Z)-1a Bu
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(E)-2c

67, 81b

71
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7
8

(E)-1b
(Z)-1b

Me
(Z)-2d
(E)-2d

94
82

9
10

(E)-1c
(Z)-1c Me

(Z)-2e
(E)-2e

71
88

11
12

(E)-1d
(Z)-1d Me

(Z)-2f
(E)-2f

90
88

13
14

(E)-1e
(Z)-1e

Me
(Z)-2g
(E)-2g

72
94c

15
16

(E)-1f
(Z)-1f Me

(Z)-2h
(E)-2h

53, 94d

95

17
18

(E)-1g
(Z)-1g Ph

(E)-2i
(Z)-2i

55e

68f

a Isolated.
b Fe(acac)3 was used instead of FeCl3 with 1.0 equiv of N-methylpyrrolidone (NMP) as co-solvent.
c E/Z = 89:11.
d Fe(dbm)3 was used instead of FeCl3.
e E/Z = 87:13.
f E/Z = 77:23.

Table 1 Stereocomplementary Iron-Catalyzed Cross-Coupling of (E)-and (Z)-Enol Tosylates 1 Derived from Methyl b-Keto Esters
 (continued)

Entry Enol tosylate R3 Product Yield (%)a
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Table 2 Stereocomplementary Iron-Catalyzed Cross-Coupling of (E)-and (Z)-Enol Tosylates 3 Derived from Methyl a-Formyl Esters

Entry Enol tosylate R3 Product Yield (%)a

1
2

(E)-3a
(Z)-3a Me

(E)-4a
(Z)-4a

94
93b

3
4

(E)-3a
(Z)-3b

Bu
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In conclusion, we developed a stereocomplementary
method for iron-catalyzed cross-coupling using (E)- and
(Z)-stereodefined enol tosylates. The present simple,
mild, robust, and totally efficient method will open a new
avenue for the synthesis of a wide range of stereodefined
(E)- and (Z)-a,b-unsaturated esters.

NMR spectra were recorded on a JEOL DELTA 300 spectrometer,
operating at 300 MHz for 1H NMR and 75 MHz for 13C NMR.
Chemical shifts (d, ppm) in CDCl3 were reported downfield from
TMS (d = 0) or CHCl3 (d = 7.26 ppm) for 1H NMR. For 13C NMR,
chemical shifts were reported in the scale relative to CDCl3 (d =
77.00 ppm) as an internal reference. IR spectra were recorded on a
JASCO FT/IR-5300 spectrometer.

(E)-Methyl 3-(p-Toluenesulfonyloxy)-2-dodecenoate [(E)-1a] 
(Scheme 2)

Scheme 2

TsCl (4.28 g, 22.5 mmol) in chlorobenzene (15 mL) was added
dropwise to a stirred solution of methyl 3-oxododecanoate (3.42 g,
15 mmol), NMI (1.85 g, 22.5 mmol), and Et3N (2.28 g, 22.5 mmol)
in chlorobenzene (15 mL) at 0–5 °C under an Ar atmosphere, and
the mixture was stirred at 20–25 °C for 2 h. H2O was added to the
mixture, which was extracted twice with EtOAc. The combined or-

ganic phase was washed with brine, dried (Na2SO4), and concentrat-
ed. The residue was purified by column chromatography on SiO2

(hexane–EtOAc = 5:1) to give the desired ester (4.59 g, 81%).

Pale yellow oil. 1H NMR (300 MHz, CDCl3): d = 0.88 (3 H, t,
J = 7.6 Hz), 1.13–1.36 (12 H, m), 1.37–1.47 (2 H, m), 2.47 (3 H, s),
2.68 (2 H, t, J = 7.6 Hz), 3.69 (3 H, s), 5.80 (1 H, s), 7.33–7.40 (2
H, m), 7.79–7.85 (2 H, m). 13C NMR (75 MHz, CDCl3): d = 14.0,
21.6, 22.6, 26.3, 28.9, 29.2 (2 C), 29.3, 31.3, 31.8, 51.4, 109.1,
128.1, 129.9, 132.9, 145.7, 165.7, 166.3. IR (neat): 2928, 2857,
1727, 1599, 1437, 1364, 1194, 1181cm–1. ESI-HRMS: m/z calcd for
C20H30O5S [M + Na+]: 405.1712; found: 405.1713.

(Z)-Methyl 3-(p-Toluenesulfonyloxy)-2-dodecenate [(Z)-1a] 
(Scheme 3)

Scheme 3

TsCl (4.28 g, 22.5 mmol) in chlorobenzene (15 mL) was added
dropwise to a stirred suspension of 3-oxododecanoate (3.42 g, 15
mmol), NMI (1.85 g, 22.5 mmol), and LiOH powder (commercially
available, anhyd; 539 mg, 22.5 mmol) in chlorobenzene (20 mL) at
0–5 °C under an Ar atmosphere, and the mixture was stirred at the
same temperature for 1 h, followed by being stirred at 20–25 °C for
1 h. A similar workup for preparing (E)-1a, the residue was purified
by column chromatography on SiO2 (hexane–EtOAc = 25:1 to 5:1)
to give the desired ester (4.11 g, 72%).

Pale yellow oil. 1H NMR (300 MHz, CDCl3): d = 0.88 (3 H, t,
J = 7.2 Hz), 1.15–1.35 (12 H, m), 1.41–1.55 (2 H, m), 2.37 (2 H, t,

7
8

(E)-3d
(Z)-3d Me

(E)-4d
(Z)-4d

88
81

9
10

(E)-3e
(Z)-3e

Me
(E)-4e
(Z)-4e

68
69

11
12

(E)-3f
(Z)-3f

Me
(E)-4f
(Z)-4f

98
80e

a Isolated.
b E/Z = 5:95.
c BuMgBr used: 2 equiv.
d E/Z = 8:92.
e E/Z = 9:91.

Table 2 Stereocomplementary Iron-Catalyzed Cross-Coupling of (E)-and (Z)-Enol Tosylates 3 Derived from Methyl a-Formyl Esters
 (continued)

Entry Enol tosylate R3 Product Yield (%)a
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J = 7.2 Hz), 2.46 (3 H, s), 3.59 (3 H, s), 5.53 (1 H, s), 7.32–7.40 (2
H, m), 7.87–7.93 (2 H, m). 13C NMR (75 MHz, CDCl3): d = 14.0,
21.6, 22.6, 26.1, 28.6, 29.1, 29.1, 29.3, 31.7, 35.1, 51.3, 109.9,
128.3, 129.6, 133.5, 145.2, 160.2, 163.4.

(E)- and (Z)-1b–g7a and (E)- and (Z)-3a–f are known compounds.7b

General Procedure for Preparing (Z)- or (E)-b-Substituted 
a,b-Unsaturated Esters [(Z)-2a–g (R3 = Me, Et, Bu) or (E)-2h 
(R3 = Ph)] (Scheme 4)

Scheme 4

1 M R3MgX (1.20 mmol in THF) was added to a stirred solution of
an (E)-enol tosylate (1; 1.00 mmol) and FeCl3 (8 mg, 0.05 mmol) in
THF (1.0 mL) at 0–5 °C under an Ar atmosphere, and the mixture
was stirred for 2 h. H2O was added to the mixture, which was fil-
tered using Celite®. The resultant mixture was extracted twice with
EtOAc, and the organic phase was washed with brine, dried
(Na2SO4), and concentrated to give the residue, which was purified
by column chromatography on SiO2 (hexane–EtOAc = 100:1 to
25:1) to give the desired product.

General Procedure for Preparing (E)- or (Z)-b-Substituted 
a,b-Unsaturated Esters [(E)-2a–g (R3 = Me, Et, Bu) or (Z)-2h 
(R3 = Ph)] (Scheme 5)

Scheme 5

1 M R3MgX (1.20 mmol in THF) was added to a stirred solution of
a (Z)-enol tosylate (1; 1.00 mmol) and Fe(dbm)3 (18 mg, 0.05
mmol) in THF (1.0 mL) at 0–5 °C under an Ar atmosphere, and the
mixture was stirred for 2 h. A workup similar to that for the prepa-
ration of (Z)-2a–g gave the desired product.

General Procedure for Preparing (E)-a-Substituted a,b-Unsat-
urated Esters (E)-4a–f (Scheme 6)

Scheme 6

1 M R3MgX (1.20 mmol in THF) was added to a stirred solution of
an (E)-enol tosylate (1.00 mmol) and FeCl3 (8 mg, 0.05 mmol) in

THF (1.0 mL) at 0–5 °C under an Ar atomosphere, and the mixture
was stirred for 2 h. A workup similar to that for the preparation of
(Z)-2a–g gave the desired product.

General Procedure for Preparing Z-a-Substituted a,b-Unsatur-
ated Esters (Z)-4a–f (Scheme 7)

Scheme 7

1 M R3MgX (1.20 mmol in THF) was added to a stirred solution of
a (Z)-enol tosylate (1.00 mmol) and FeCl3 (8 mg, 0.05 mmol) in
THF (1.0 mL) at 0–5 °C under an Ar atomosphere, and the mixture
was stirred for 2 h. A workup similar to that for the preparation of
(Z)-2a–g using (E)-2 gave the desired products.

Supporting Information for this article is available online at
http://www.thieme-connect.com/ejournals/toc/synlett.
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