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An enantioselective hydrosilylation of imines was successfully 5 

achieved using a chiral borane catalyst generated by the in 
situ hydroboration of a binaphthyl-based chiral diene with 
Piers’ borane HB(C6F5)2 to furnish a variety of optically 
active amines in 70->99% yields and 44-82% ee’s. 

Catalytic hydrosilylation of unsaturated molecules represents a 10 

very important and useful transformation in organic chemistry, 
and numerous excellent metal or metal-free catalytic systems 
have been well established.1-3 Among these methodologies, the 
Piers type hydrosilylation has both synthetic and mechanistic 
interest for chemists. In 1996, Piers and Parks reported a 15 

B(C6F5)3-catalyzed hydrosilylation of carbonyl compounds, in 
which the Lewis acid activated the silane instead of carbonyl 
function.4 This Si-H bond activation by B(C6F5)3 was further 
extended to the reduction of imines, the dehydrocoupling reaction,  
the hydrosilylation of olefins, the deoxygenative hydrosilylation 20 

of carbon dioxide, and the deoxygenation of carbohydrates.5 
Interestingly, the Si-H bond activation in the hydrosilylation is 
similar to the H-H bond activation in the latterly emerging 
chemistry of frustrated Lewis pairs (FLPs).6,7 In 2010, Alcarazo 
and co-workers described such a silane activation using the FLPs 25 

of hexaphenylcarbodiphosphorane and B(C6F5)3.
8 Recently, Erker 

and co-workers also described a reversible heterolytic Si-H bond 
activation by an intramolecular FLP.9 Despite these advances, the 
first asymmetric version of this type of hydrosilylation was not 
disclosed until 2008.10 Oestreich and co-workers reported a 30 

B(C6F5)3-catalyzed hydrosilylation of acetophenone using a 
chiral silane to afford the chiral alcohol with 38% ee.11  In a 
later study, the combination of B(C6F5)3 and chiral silanes for 
the reduction of imines gave racemic products.12 In 2012, the 
authors also developed a novel borane 2a for the asymmetric 35 

reduction of imines 1 using PhMe2SiH or chiral silanes to give 
chiral amines with up to 62% ee (Scheme 1).13 Recently, 
Klankermayer and co-workers employed the camphor derived 
borane catalyst 2b for this asymmetric hydrosilylation of 
imines. The borane 2b exhibited an extremely high catalytic 40 

activity, but led a racemic product  (Scheme 1).14 However, 
the FLP catalysts 2c gave up to 87% ee (Scheme 1).14 The 
Lewis base tri-tert-butylphosphine largely improved the 
enantioselectivity but diminished the reactivity. However, the 
development of highly reactive and enantioselective 45 

hydrosilylation is still a challenge. 
 As our interest in developing novel borane catalysts for the 
FLP-catalyzed hydrogenation,15 very recently, we reported the 

asymmetric hydrogenation of imines, silyl enol ethers, and 2,3-
disubstituted quinoxalines.16 The borane catalysts 5 were 50 

generated in situ by the hydroboration of binaphthyl-based chiral 
dienes 4 with Piers’ borane (Scheme 2).17,18 Since the Si-H bond 
activation is similar to H-H bond, we envisioned that boranes 5 
would be also likely one class of effective catalysts for the 
asymmetric hydrosilylation of imines.  Herein, we reported our 55 

efforts on this subject. 
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Scheme 1 Representative asymmetric hydrosilylation of imines 
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Scheme 2 Chiral borane catalyst for asymmetric reactions 

 The asymmetric hydrosilylation of imine 1a with PhMe2SiH 
was initially examined using 1 mol % of chiral dienes 4a-g and 2 
mol % of Piers’ borane (Scheme 3). It was found that all these 65 

reactions can proceed efficiently at 0 °C to give the desired amine 
2a in quantitative conversions. Chiral dienes 4a-d bearing less 
bulky substituents gave very low ee’s. The more bulky chiral 
dienes 4e-g gave 51-58% ee’s. In sharp contrast to borane 2b 
reported by Klankermayer and co-workers (Scheme 1),12 boranes 70 

5 generated in situ from chiral dienes 4 gave a promising 
enantioselectivity instead of racemic products, and additional 
Lewis bases were unnecessary in the current catalytic system. 
 The reaction conditions including concentration, solvents, 
temperature, and catalyst loading were carefully optimized to 75 

further improve the enantioselectivities. It was found that the 
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reaction concentration had an obvious impact on the 
enantioselectivities when chiral diene 4g was used, and 67% ee 
was obtained at the concentration of 0.5 M (Table 1, entries 1-3). 
However, for chiral diene 4f, such an improvement was not 
observed. Solvents were found to affect the enantioseletivities 5 

obviously but have little influence on the reactivities, and C6H5F 
proved to be a better solvent (Table 1, entries 4-9). Decreasing 
the reaction temperature to -20 °C did not improve the 
enantioselectivity (Table 1, entry 10). The catalyst loading can be 
reduced to 0.5 mol % without loss of enantioselectivity, but a 10 

longer reaction time was required (Table 1, entry 11). In fact, the 
asymmetric hydrosilylation of imine 1a using 1 mol % of borane 
4g and Piers’ borane can be completed in 6.5 h (Table 1, entry 
12). Moreover, silanes Ph3SiH and Ph2MeSiH were examined, 
but no reaction was observed under the current conditions. The 15 

substituents on the nitrogen atom of imines were also evaluated. 
Electron-deficient groups such as 4-chlorophenyl and 4-
bromophenyl gave a very low reactivity (<10% conversion). 
Several electron-rich groups (4-isopropoxylphenyl, 4-piperidin-1-
ylphenyl, and cyclohexanyl) gave a similar reactivity with the 20 

PMP group but an obviously lower enantioselectivity (31-57% 
ee’s). 

HB(C6F5)2 (2 mol %)
chiral diene 4 (1 mol %)
PhMe2SiH (1.1 equiv)

1a 3a

4a: R = 4-Et >99% conv, 23% ee
>99% conv, 22% ee4b: R = 4-iPrO
>99% conv, 20% ee4c:  3,3'-(2-Np)2
>99% conv, 22% ee4d: R = 2-OMe-5-iPr
>99% conv, 51% ee4e: R = 3,5-tBu2
>99% conv, 58% ee4f:  R = 3,5-(TMS)2C6H3
>99% conv, 54% ee4g: R = 3,5-tBu2C6H3

N

Ph

PMP HN

Ph

PMP

C6H5F, 0 °C, 15 h
R

R  
Scheme 3 Evaluation of chiral dienes for asymmetric hydrosilylations 

Table 1 Optimization of reaction conditionsa 
25 

Entry Solvent Conc. (M) Time (h) Conv (%)b Ee (%)c 
1 C6H5F 0.25 15 >99 54 
2 C6H5F 0.5 15 >99 67 
3 C6H5F 1.0 15 >99 62 
4 C6H5Cl 0.5 15 >99 63 
5 C6H5Br 0.5 15 >99 58 
6 Toluene 0.5 15 >99 56 
7 CH2Cl2 0.5 15 >99 58 
8 Et2O 0.5 15 91 30 
9 Pentane 0.5 15 >99 14 

10 d C6H5F 0.5 24 87 68 
11e C6H5F 0.5 21 >99 67 
12 C6H5F 0.5 6.5 >99 67 

a All the reactions were carried out with imine 1a (0.50 mmol), PhMe2SiH 
(0.55 mmol), chiral diene 4g (0.005 mmol), and Piers’ borane (0.010 
mmol) at 0 °C unless otherwise noted. b The conversion was determined 
by crude 1H NMR. c The ee was determined by chiral HPLC (Chiralcel 
OD-H column). d At -20 °C. e 0.5 mol % of chiral diene 4g and 1.0 mol % 30 

of Piers’ borane were used. 

  
 The asymmetric hydrosilylation of imines 1 was next 
investigated using chiral diene 4g under the optimal reaction 

conditions. As shown in Table 2, a wide range of imines 1 can be 35 

efficiently reduced to furnish the desired amines 3a-r in 70->99% 
yields with 44-82% ee’s. Both electron-donating and withdrawing 
substituents on the para and/or meta positions of phenyl group 
were well tolerant for this reaction (Table 2, entries 2-12). Imines 
derived from 1-(nathphthalen-2-yl)ethanones were suitable 40 

substrates (Table 2, entries 13 and 14). The reaction of imines 
derived from phenylpropanones gave relatively lower ee’s (Table 
2, entries 15 and 16). In particular, the asymmetric 
hydrosilylation can be extended to the challenging 
dialkylketoimine substrates to give reasonable yields and ee’s 45 

(Table 2, entries 17 and 18). 

Table 2 Chiral borane catalyzed asymmetric hydrosilylation of iminesa 

Entry Product (3) Yield (%)b Ee (%)c,d 

 
 
 
 

1 
2  
3  
4  
5  
6  
7  

8 
9 

10 
11 

HN
PMP

R
 

3a: R = H 
3b: R = 4-Me 
3c: R = 4-OMe 
3d: R = 4-Ph 
3e: R = 4-Br 
3f: R = 3-Me 
3g: R = 3-OMe 
3h: R = 3-Br 
3i: R = 3,4-Me2 

3j: R = 3,4-(OMe)2 

3k: R = 3,4,5-(OMe)3 

 
 
 
 

>99 
99 
99 

>99 
97 
97 

>99 
96 

>99 
90 
96 

 
 
 
 

67 
61 
65 
61 
59 
68 
72 
68 
71 
78 
82 

12 

HN PMP

O

O  
3l >99 59 

13 
14 

HN
PMP

R  
3m: R = H 

3n: R = OMe 

>99 
>99 

71 
74 

15 
16 

HN
PMP

R

 
3o: R = H 
3p: R = Me 

>99 
90 

50 
55 

 
 
 

17 

HN
PMP

 
3q 86 44 

 
 
 

18e 

HN
PMP

 
3r 

 
 
 

70 

 
 
 

60 
a All the reactions were carried out with imine 1 (0.50 mmol), PhMe2SiH 
(0.55 mmol), chiral diene 4g (0.005 mmol) and Piers’ borane (0.010 
mmol) in C6H5F (1.0 mL) at 0 °C for 8 h unless otherwise noted. b Isolated 50 

yield based on imine 1. c The ee was determined by chiral HPLC. d The 
absolute configuration was determined as R except for entries 12,14, 16 
and 18 by comparing the optical rotation or the retention time  in HPLC 
with the reported one. e 2.5 mol % of chiral diene 4g and 5.0 mol % of 
Piers’ borane were used, and the reaction time was 24 h.  55 
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Conclusions 
In summary, a simple chiral borane catalyst generated in situ by 
the hydroboration of a chiral diene 4g with Piers’ borane was 
highly effective for the asymmetric hydrosilylation of imines to 
furnish the desired optically active amines in 70->99% yields and 5 

44-82% ee’s. It is noteworthy that the usage of highly reactive 
chiral borane as a catalyst without addition of any other Lewis 
bases can give promising enantioselectivies. Further efforts to 
improve the enantioselectivity and expand the substrate type are 
underway in our laboratory. 10 
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