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A multi-component reaction strategy was used for the fast and efficient synthesis of amide isosteres of
known Bcl-2 inhibitors capable of disrupting protein–protein interactions. Ugi reaction and a subsequent
nucleophilic aromatic substitution reaction provide a versatile path to libraries of compounds similar to
Abbott’s acylsulfonamides. Modeling arguments are used to explain the inferior activity of the amide as
opposed to the sulfonamide series.

� 2008 Elsevier Ltd. All rights reserved.
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Figure 1. Examples of Abbott’s acylsulfonamides.
Human cancers overexpressing Bcl-2 and related survival pro-
teins are often resistant to cytotoxic therapeutics.1 These include
breast, prostate, colorectal, gastric, and (non)-small-cell lung can-
cer, as well as neuroblastomas, B-cell lymphoma, and melanomas.
Acquired resistance toward radiation or chemotherapy often leads
to tumor relapse and aggressive formation of metastasis and finally
to clinical failure of the current therapeutic regiment. Bcl-2 family
members are important regulators of programmed cell death,
belonging to the mitochondrial apoptosis pathway. Proapoptotic
Bcl-2 family members such as Bcl-2, Bcl-XL, and Bclw interact with
antiapoptotic Bcl-2 family members, for example, Bax, Bak, and
Bad and neutralize each other. Several experimental results indi-
cate that Bcl-2 family members are promising new cancer targets.
Thus synthetic cell permeable BH3 peptides2 and newly discovered
small molecules trigger apoptosis in cancer cells and show tumor
regression in xenograft models.3–6

In a program to discover and develop Bcl2 family protein inter-
action antagonists Abbott scientists described a series of N-acyl-
sulfonamide-based inhibitors, for example, 1.7,8 These compound
series was developed using a NMR fragment-based approach, to-
gether with parallel chemistry (Fig. 1). Recently several potent in
vitro and in vivo inhibitors together with structural information
about their binding mode into Bcl-XL have been reported and
ll rights reserved.
two compounds currently undergo clinical trials. ABT-737, 2 a
pan-Bcl family inhibitor targeting Bcl-2, Bcl-w, and Bcl-XL has been
shown to induce regression of lymphoma and small-cell lung can-
cer in corresponding xenograft models.

As a continuation of our interests to discover novel Bcl-2 family
protein interaction antagonists we present here our attempts to
prepare compounds similar to Abbott’s Bcl-XL inhibitors replacing
the sulfonamide backbone against an Ugi backbone.9
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Scheme 1. Preparation of 4-fluoro-3-nitro-phenylisocyanide 5 useful for isocya-
nide-based multi-component reactions and subsequent nucleophilic aromatic
substitution reactions.
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Scheme 2. Synthesis of potential Bcl-2 protein interaction antagonists by an initial
Ugi reaction and a second nucleophilic aromatic substitution reaction.
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Our structural design of our novel inhibitors is based upon the
analysis of the binding cleft of Bcl-2 and structural disclosure of
the binding mode of a representative compound (Fig. 2). The Ab-
bott Bcl-2 inhibitors adopt a V-shaped conformation with the
N-acylsulfonamide moiety at the solvent rim of the deep and
hydrophobic binding groove and the biphenyl and 2-amino nitro-
phenyl moieties pointing toward the floor of the groove. Due to
the elongated binding groove which is not completely filled by
the compound we reasoned that an elongation of the inhibitor by
a 2-atom insertion fragment in the backbone would be accepted
by the Bcl-2 protein. From the analysis of X-ray structures of Ugi
backbones it appears that there is sufficient conformational
freedom to readily adopt into a large binding groove. Therefore
we reasoned that the quasi isosteric replacement of the N-acylsulf-
onamide against a a-acylaminocarbonamide would be tolerated by
the Bcl-2 binding groove (Fig. 3). Although the sulfonamide con-
sists of the three backbone atoms SNC and the Ugi backbone com-
prises the five backbone atoms NCCNC, modeling suggests a similar
3D shape and a reasonable overlap of the terminal residues. An
isosteric replacement would have several advantages; the access
to a novel class of potential Bcl-2 inhibitors by a convergent and
comparatively short synthetic route; the circumvention of intellec-
tual property issues and potentially improved pharmacokinetic
properties.

To test this idea we had to synthesize a phenyl isocyanide
capable to undergo subsequent nucleophilic aromatic substitution
reactions.10 Thus starting from 3-nitro-4-fluoroaniline 3 we
assembled the corresponding isocyanide in the classical sequence
formylation, dehydration according to Ugi in overall 60% yield
(Scheme 1). This novel isocyanide allows for U-MCRs and even
more subsequent diversification by nucleophilic aromatic substitu-
tion reactions.

Pursuing the idea of an isosteric replacement of the N-acylsulf-
onamide against an a-acylaminocarbonamide we prepared a larger
amount of the Ugi intermediate 9 by the reaction of methylamine
8, formaldehyde 7, isocyanide 3, and biphenyl carboxylic acid 6
(Scheme 2).11 This intermediate was used as starting material for
Figure 2. An Abbott sulfonamide-based inhibitor bound onto Bcl-XL (PDB IP: 1YSI).
Pictures generated using PyMol (www.pymol.com).
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Figure 3. Structural comparison of the Abbott sulfonamide backbone with an Ugi
backbone.
several nucleophilic aromatic substitutions under mild conditions
for the preparation of a small library of potential Bcl-2 inhibitors
(Fig. 4 and Table 1).12

To compare our compounds against authentic Abbott com-
pounds we resynthesized several of those according to the patent
procedures. Screening was performed as recently described using
a FP assay.13 The activities of the a-acylaminocarbonamides are
summarized in Table 1.

Initial docking studies using MOLOC indicate that our a-acyla-
minocarbonamides could indeed potentially bind deep into the
hydrophobic Bcl-2 groove (Fig. 4).14

However, as by the FP assay performed the affinity of our first
generation of compounds is at least 2–3 magnitudes less. This
can be explained in part by the fact that the more active com-
pounds of the Abbott series have a molecular weight which is still
Figure 4. Compound 12 (green sticks) docked into the high resolution NMR stru-
cture of an Abbott compound (yellow sticks) in Bcl-XL (PDB IP: 1YSI).

http://www.pymol.com


Table 1
In vitro FP data of selected Bcl-2 family protein–protein interrupters (Bcl-w)

Compound Structure KI (lM)
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1/3 higher (cf. ABT-737 812 Da vs compound 10 490 Da) as com-
pared to our initial series of compounds. Analyzing the published
molecular structure it appears that the interaction between the
small molecule and the Bcl-2 protein is almost exclusively gov-
erned by van der Waals interactions and shape complementarity.
Moreover the N-acylsulfonamides can undergo a favorable electro-
static interaction with the carboxyl group of the rim amino acid
R139, whereas the present a-acylaminocarbonamides can appar-
ently not undergo such a hydrogen bond interaction. However
based on the promising initial low micromolar activity and the still
rather low molecular weight we are confident that we will be able
to design a second generation of more potent Bcl-2 inhibitors
based on the Ugi backbone in the future.

In summary, we have prepared several potential Bcl-2 protein–
protein interaction antagonists in two steps utilizing an IMCR and
a subsequent aromatic substitution reaction. For this purpose we
developed a versatile bifunctional p-fluorophenyl isocyanide useful
for nucleophilic aromatic substitution reactions. The chemistry is
high yielding and potentially useful to prepare arrays of compounds.
The designed compounds are based upon the described acylsulfona-
mide inhibitors of Abbott. However, in contrast to the acylsulfona-
mides the best inhibitors of the newly described series are at least
2–3 orders of magnitude less active. Possible reasons for this drop
of activity and possible routes towards more potent inhibitors are
discussed. However, regarding the yet small molecular weight of
the described compounds, the current backbone comprises a good
starting point for further medicinal chemistry to yield higher active
compounds.
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