

0040-4039(95)01066-1

A Novel and Convenient Synthesis of 2-Aryl-4-methylenetetrahydrofurans from 2-(Trimethylsiloxymethyl)allyltrimethylsilane and Acetals

Takeshi Oriyama,* Akihiro Ishiwata, Tomohumi Sano, Toshie Matsuda, Masaki Takahashi, and Gen Koga

Department of Chemistry, Faculty of Science, Ibaraki University, Bunkyo, Mito 310, Japan

Abstract: The reaction of acetals with 2-(trimethylsiloxymethyl)allyltrimethylsilane under the influence of the combined use of a catalytic amount of tin(II) halide and acetyl halide affords the corresponding 2-aryl-4-methylenetetrahydrofurans in good yields.

Tetrahydrofuran is one of the most common skeletal elements among a wide range of biologically active natural products. While a number of methods have already been documented for the construction of this important ring element,¹ they appear to be only scattered procedures for the efficient synthesis of tetrahydrofurans by a manipulation of carbonyl compounds with relevant three-carbon units. Trost *et al.* reported a palladium-catalyzed cycloaddition of trimethylenemethane to carbonyl compounds to form methylene-tetrahydrofurans.² Much more recently, Taddei *et al.* reported a two-step synthesis of methylene-tetrahydrofurans from aldehydes and 2-chloromethyl-3-trimethylsilyl-1-propene via homoallyl alcohols.³ To the best of our knowledge, however, acetals have never been used in the direct preparation of tetrahydrofurans via a carbon-carbon bond-forming three-carbon manipulation.

Now we wish to report a new and efficient method for the synthesis of methylenetetrahydrofurans from acetals and 2-(trimethylsiloxymethyl)allyltrimethylsilane.⁴

Our previous investigation on the halogenative allylation of acetals with allyltrimethylsilane promoted by SnX_2 / AcX⁵ suggested that the reaction of acetals with an allyltrimethylsilane 1 bearing a protected hydroxymethyl group at β -position would provide a simple and efficient route towards the synthesis of 2-substituted-4-methylenetetrahydrofurans (Scheme 1).

Scheme 1

First, we examined the reaction of *p*-anisaldehyde dimethyl acetal (2) with 2-(trimethylsiloxymethyl)allyltrimethylsilane (1) in the presence of various activator catalysts as shown in Table 1. A stoichiometric amount of a common Lewis acid, $BF_3 \cdot OEt_2$,⁶ gave directly 2-substituted-4methylenetetrahydrofuran (3) in 74% yield (Run 5). However, neither reaction with a catalytic amount of $BF_3 \cdot OEt_2$ nor TiCl₄ afforded desired cyclization products 3 (Runs 1 and 2). Allylation product 4 was formed predominantly by a catalytic amount of trimethylsilyl trifluoromethanesulfonate (TMSOTf)⁷ (Run 4). While the reaction promoted by the combination of SnCl₂ and AcCl (5 mol% each to the acetal) afforded the corresponding tetrahydrofuran in 91% yield, a stoichiometric amount of AcCl (1.1 equiv. to the acetal) lowered the yield (Run 7). A catalytic amount of benzoyl halide (BzX) in place of AcCl also gave satisfactory results (Runs 8 and 12). The reagent system, SnX₂ (5 mol%) - AcX (5 mol%)⁸ gave better results in terms of both chemical yield and efficiency compared to other activator systems.

 Table 1. The Effect of Activator System to the Reaction between p-Anisaldehyde

 Dimethyl Acetal(2) and 2-(Trimethylsiloxymethyl)allyltrimethylsilane(1).

∘-{_}-			ctivator	
2	OMe VV	Ar = 4	2012 / rt Ar Ar	0 Ar •
Run	Activator (mol%) ^{a)}	Time / h	Yield ^{b)} of 3 / %	Yield ^{b)} of 4 / %
1	BF ₃ ·OEt ₂ (5)	8	0	0
2	TiCl ₄ (5)	6	0	13
3	SnCl ₄ (5)	2	65	35
4	TMSOTf (5)	2 ^{c)}	6	80
5	BF ₃ ·OEt ₂ (120)	2	74	0
6	SnCl ₂ (5) - AcCl (5)	2	91	0
7	SnCl ₂ (5) - AcCl (110)	2	57	0
8	SnCl ₂ (5) - BzCl (5)	2	76	8
9	SnCl ₂ (5) - TMSCI (5)	30	0	9
10	AcCl (5)	8	0	0
11	SnBr ₂ (5) - AcBr (5)	1	83	0
12	SnBr ₂ (5) - BzBr (5)	1.5	83	0
13	SnBr ₂ (5) - TMSBr (5)	6	17	53
14	Sn(OTf) ₂ (5)	1	82	0

a) Molar ratio of acetal(2) : allylsilane(1) = 1 : 1.2 b) Isolated yield of purified product. c) The reaction was performed at -78°C.

The reaction was conducted with various acetals under the optimum conditions and the results are summarized in Table 2.⁹ As can be seen, the reaction is successful for acetals derived from various aromatic aldehydes and ketones. However, in the case of benzaldehyde dimethyl acetal, 2-phenyl-4-methylenetetrahydrofuran was obtained in only 25 % yield.

In this reaction, acetals are used as dication equivalent of one-carbon unit, whereas 2-(trimethylsiloxymethyl)allyltrimethylsilane provides dianion $^{-}$ C-C-C-O $^{-}$ equivalent as shown in Scheme 2.¹⁰

Me R ¹¹	0 OMe X R ² + 5	TMS	_ OTMS	SnX ₂ CH ₂ C	$\frac{SnX_2 - AcX}{CH_2Cl_2/rt} \xrightarrow{R^1}_{R^2} 0$		
	R ¹	R ²	x	Time / h	Yield ^{c)} of 6 / %		
	Ph	н	CI	12	25		
	4-MeOC ₆ H ₄	н	CI	2	91		
	2-MeOC ₆ H₄	н	CI	4	97		
	4-MeC ₆ H₄	н	Br	24	67		
	2-Furyl	н	Br ^{d)}	8	70		
((<i>E</i>)-PhCH=CH	н	Br	12	64		
	Ph	Ме	Cl Br	4 2	66 58		
	Ph	Et	Cl Br	6 6	47 70		

Table 2. Synthesis of Various 4-Methylenetetrahydrofurans from Acetals.^{a),b)}

a) Each product gave satisfactory ¹H NMR and IR spectra.

b) Molar ratio of acetal : allylsilane : SnX_2 : AcX \approx 1 : 1.2 : 0.05 - 0.1 : 0.05 - 0.1.

c) Isolated yield of purified product.

d) The reaction was performed at -20°C.

Scheme 2

Next, we examined the reaction of ethylene glycol acetal of p-anisaldehyde(7) with allylsilane 1, and the result was also proved to be very successful (Scheme 3).

Scheme 3

This novel methodology was also effective to the synthesis of 2,5-disubstituted-4-methylenetetrahydrofuran 9 from acetal and 2-[1-(trimethylsiloxy)ethyl]allyltrimethylsilane (8) as shown in Scheme 4.

In conclusion, the present one-step reaction of acetals and allylsilane to form methylenetetrahydrofurans has an advantage that features experimental convenience and extremely mild reaction conditions in comparison to the earlier two-step synthesis of methylenetetrahydrofurans. Further work on broadening the scope and synthetic applications of this novel methodology is now in progress.

REFERENCES AND NOTES

- For example, see: Boivin, T. L. B. Tetrahedron 1987, 43, 3309. 1.
- a) Trost, B. M.; Bonk, P. J. J. Am. Chem. Soc. 1985, 107, 8277. b) Trost, B. M.; King, S. A. 2. Tetrahedron Lett. 1986, 27, 5971. c) Trost, B. M.; King, S. A.; Schmidt, T. J. Am. Chem. Soc. 1989, 111, 5902. d) Trost, B. M.; King, S. A. J. Am. Chem. Soc. 1990, 112, 408. D'Aniello, F.; Mattii, D.; Taddei, M. Synlett 1993, 119.
- 3.
- 2-(Trimethylsiloxymethyl)allyltrimethylsilane was prepared according to the procedure reported by Trost: 4. Trost, B. M.; Chan, D. M. T.; Nanninga, T. N. Org. Synth. 1984, 62, 58.
- 5. Oriyama, T.; Iwanami, K.; Tsukamoto, K.; Ichimura, Y.; Koga, G. Bull. Chem. Soc. Jpn. 1991, 64, 1410.
- 6.
- Hosomi, A.; Ando, M.; Sakurai, H. Chem. Lett. 1986, 365. Tsunoda, T.; Suzuki, M.; Noyori, R. Tetrahedron Lett. 1980, 21, 71. 7.
- Other useful reactions promoted by AcX / SnX2 reagent system, see: Oriyama, T.; Iwanami, K.; Miyauchi, 8. Y.; Koga, G. Bull. Chem. Soc. Jpn. 1990, 63, 3716.
- 9. The following experimental procedure is typical: to a suspension of anhydrous tin(II) chloride (2.6 mg, 0.014 mmol) and p-anisaldehyde dimethyl acetal (49.5 mg, 0.27 mmol) in dichloromethane (2.0 ml) were added 2-(trimethylsiloxymethyl)allyltrimethylsilane (70.4 mg, 0.33 mmol) in dichloromethane (1.5 ml) and acetyl chloride (1.2 mg, 0.015 mmol) successively at room temperature under an argon atmosphere. The reaction mixture was stirred for 2 h at this temperature and quenched with a saturated aqueous sodium hydrogen carbonate. The organic materials were extracted with dichloromethane and combined extracts were washed with brine and dried over anhydrous sodium sulfate. The solvent was evaporated and 2-(4methoxyphenyl)-4-methylenetetrahydrofuran (46.9 mg, 91%) was isolated by thin layer chromatography on silica gel. ¹H NMR (400 MHz, CDCl₃) & 7.28 (d, J=8.6 Hz, 2H), 6.87 (d, J=8.6 Hz, 2H), 5.02 (d, J=2.2 Hz, 1H), 4.95 (d, J=2.2 Hz, 1H), 4.89 (dd, J=8.8, 6.2 Hz, 1H), 4.50 (d, J=13.4 Hz, 1H), 4.37 (d, J=13.4 Hz, 1H), 3.79 (s, 3H), 2.89 (dd, J=15.8, 6.2 Hz, 1H), 2.57 (dd, J=15.8, 8.8 Hz, 1H). ¹³C NMR (100 MHz, CDCl₃) δ 159.1, 148.1, 133.7, 127.3, 113.7, 104.2, 80.8, 71.2, 55.2, 41.0.
- 10. Concerning the reaction mechanism, allylation product is supposed to be formed first directly from acetal, followed by intramolecular cyclization to give 4-methylenetetrahydrofuran along with a formation of two molar amounts of TMSOMe.

(Received in Japan 15 March 1995; revised 5 June 1995; accepted 12 June 1995)