Catalytic Asymmetric Electrophilic a-Amination of a-Cyanoketones in the **Presence of Chiral Palladium Complexes**

Ju Hee Lee, Hyoung Tae Bang, Dae Young Kim*

Department of Chemistry, Soonchunhyang University, Asan, Chungnam 336-745, Korea Fax +82(41)5301247; E-mail: dyoung@sch.ac.kr Received 1 May 2008

Abstract: The catalytic enantioselective electrophilic α -amination promoted by chiral palladium complexes is described. Treatment of a-cyanoketones with azodicarboxylates as electrophilic amination reagents under mild reaction conditions afforded the corresponding a-amino a-cyanoketones with excellent enantiomeric excesses (81-95% ee).

Key words: electrophilic amination, asymmetric catalysis, chiral palladium catalysts, α-cyanoketones

Chiral a-amino nitriles are very useful bifunctional compounds for a large number of synthetic applications.¹ The most popular and wide use of chiral a-amino nitrile involves hydrolysis of the nitrile group to generate chiral α amino acids,² which are often used as key building blocks in pharmaceuticals. In addition, since the cyano group is easily converted into other functional groups, chiral α substituted α -amino nitriles would be versatile synthetic intermediates for the synthesis of nitrogen-containing heterocycles³ and chiral 1,2-diamine derivatives, which are employed as medicinal agents or chiral ligands.⁴ The catalytic asymmetric cyanation of imines, Strecker reaction, represents one of the most popular methods for the synthesis of chiral α -amino nitriles and their derivatives. Several successful achievements in catalytic asymmetric Strecker reaction were reported.⁵ However, most of the known asymmetric Strecker reactions rely on the use of toxic and anhydrous cyanide reagents. The catalytic asymmetric electrophilic amination of a-substituted nitriles seems to be an alternate method for the synthesis of chiral α-amino nitrile derivatives. The catalytic, enantioselective, direct C-N bond-formation reaction of active methine compounds represents an efficient and simplest procedure to generate stereogenic carbon center attached to a nitrogen atom.⁶ Recently, several groups presented the direct enantioselective amination of active methine compounds in the presence of chiral metal complexes or organocatalysts.^{7–9} To the our best knowledge, although electrophilic amination of active methines such as β-ketoester,⁷ β -ketophosphonates,⁸ and α -cyanoacetates⁹ have been reported, up to now there are no examples of these reactions with α -cyanoketones.¹⁰

SYNLETT 2008, No. 12, pp 1821-1824 Advanced online publication: 02.07.2008 DOI: 10.1055/s-2008-1078564; Art ID: U04608ST © Georg Thieme Verlag Stuttgart · New York

a Ar = Ph: (*R*)-BINAP **b** Ar = 4-methylphenyl: (*R*)-Tol-BINAP

Ar = 3,5-dimethylphenyl: (R)-Xylyl-BINAP

As part of a research program related to the development of synthetic methods for the enantioselective construction of stereogenic carbon centers,¹¹ we report the catalytic enantioselective functionalization of ester derivatives promoted by air- and moisture-stable chiral palladium complexes.^{12e-g} In this letter, we report the direct α -amination of cyclic and acyclic α -cyanoketones 3 catalyzed by palladium complexes 1 and 2^{12} (Figure 1) with azodicarboxylates 4 as the electrophilic nitrogen source.

Our investigation began with the catalytic enantioselective electrophilic amination of 2-cyanoindanone **3a** with azodicarboxylates 4 as the electrophilic aminating reagent in MeOH at room temperature in the presence of 5 mol% of catalyst **1a** (BF_4). We examined the impact of the structure of azodicarboxylates 4 on enantioselectivity (Table 1, entries 1-4). The best results were obtained with tertbutyl ester of azodicarboxylate. Concerning the solvent (entries 4-13), the use of acetone gave the best results in the yield and the enantiomeric excess (entry 10). Catalysts 1a (BF₄) and 1a (PF₆) were more effective than other catalysts (entries 10 and 15).

To examine the generality of the catalytic enantioselective amination of α -cyanoketones **3** by using chiral palladium complexes 1, we studied the amination of various α cyanoketones **3a–g**.¹³ As it can be seen by the results summarized in Table 2, the corresponding α -aminated α -cyanoketones 5a-g were obtained in excellent yields and enantioselectivities.

Table 1 Optimization of the Reaction Conditions

^a Enantiopurity of 5 was determined by HPLC analysis with Chiralpak AD column.

^b Acetone–THF, 4:1.

^c Acetone-PhMe, 4:1.

^d Actone– H_2O , 19:1.

The cyclic α -cyanoketones **3a–d** reacted with *tert*-butyl azodicarboxylate (**4d**) to give the corresponding α -aminated α -cyanoketones **5a–d** in 90–95% yields and 83–95% ee (Table 2, entries 1–5). Acyclic α -cyanoketones **3e–g** reacted with *tert*-butyl azodicarboxylate (**4d**) or ethyl azodicarboxylate (**4a**) to afford the α -aminated adducts **5e–g** in alcoholic solvents with 81–91% ee in the presence of catalyst **2c** (Table 2, entries 6–8).

We examined the catalytic enantioselective electrophilic amination of α -cyanoacetate **6** with *tert*-butyl azodicarboxylate (**4d**) using palladium complexes **1** and **2** at room temperature. In the presence of 5 mol% of catalyst **1a** ($X = BF_4$), the reaction proceeded to afford the α -aminated product **7** after one hour with 86% yield and 53% ee (Scheme 1). The absolute configuration of 7 was determined to be R by comparing specific rotation and chiral HPLC data with an authentic sample.^{9b,c}

In conclusion, we have developed a highly efficient catalytic enantioselective α -amination of cyclic and acyclic α -cyanoketones using air- and moisture-stable chiral palla-

Scheme 1 Catalytic enantioselective amination of α -cyanoacetate 6

$R^1 \xrightarrow{O} CN R^2$	+ II RO ₂ C ^N	acetone, r.t. R ¹	HN CO ₂ R N-CO ₂ R R ² 5			
	CN CN Ph		CN			
3a n = 0 3b n = 1	3c n 3d n	= 0 3e R = F = 1 3f R = a 3g R = b	²h Illyl penzyl			
Entry	3	4 , R	Catalyst	Time (min)	Yield (%) ^a	ee (%) ^b
1	3a	4d , <i>t</i> -Bu	1a (PF ₆)	15	5a , 93	92
2	3a	4d , <i>t</i> -Bu	1a (BF ₄)	10	5a , 95	92
3	3b	4d , <i>t</i> -Bu	1a (BF ₄)	10	5b , 95	95
4	3c	4d , <i>t</i> -Bu	1a (BF ₄)	10	5c , 95	85
5	3d	4d , <i>t</i> -Bu	1a (BF ₄)	2.5 h	5d , 90	83
6 ^c	3e	4d , <i>t</i> -Bu	2c (BF ₄)	20 h	5e , 87	86
7 ^d	3f	4d , <i>t</i> -Bu	2c (BF ₄)	1 h	5f , 94	91
8 ^d	3g	4 a, Et	2c (BF ₄)	5 h	5g , 90	81

CO₂R

 Table 2
 Catalytic Enantioselective Amination of α-Cyanoketones

Pd cat

^a Yield of isolated product.

^b Enantiopurity of **5** was determined by HPLC analysis with Chiralpak AD (for **5a**, **c**, **f**, **g**), AS (for **5b**), (*S*, *S*)-Whelk-O1 (for **5d**) and Chiralcel OD-H (for 5e) columns.

^c Reaction carried out in *t*-BuOH-*i*-PrOH, 1:1.

^d Reaction carried out in *t*-BuOH.

dium complexes. The desired α -aminated products were obtained in good to high yields, and excellent enantioselectivities (81-95% ee) were observed for all the substrates examined in this work. To our knowledge, these results constitute the first examples of the direct catalytic asymmetric amination of α -cyanoketones. We believe that this report provides a practical method for the preparation of chiral α -amino α -cyanoketones derivatives, and the availability of these compounds should facilitate medicinal chemical studies in various fields. Further details and application of this amination will be presented in due course.

Acknowledgment

This research was financially supported by the Ministry of Education, Science, Technology (MEST) and Korea Industrial Technology Foundation (KOTEF) through the Human Resource Training Project for Regional Innovation.

References and Notes

(1) Enders, D.; Shilvock, J. P. Chem. Soc. Rev. 2000, 29, 359.

- (2) For reviews on α -amino acids, see: (a) Williams, R. M. Synthesis of Optically Active α-Amino Acids; Pergamon: Oxford, 1989. (b) Duthaler, R. O. Tetrahedron 1994, 50, 1539. (c) Hanessian, S.; McNaughton-Smith, G.; Lombart, H.-G.; Lubell, W. D. Tetrahedron 1997, 53, 12789. (d) Arend, M. Angew. Chem. Int. Ed. 1999, 38, 2873. (e) Kotha, S. Acc. Chem. Res. 2003, 36, 342. (f) Maruoka, K.; Ooi, T. Chem. Rev. 2003, 103, 3013.
- (3) (a) Matier, W. L.; Owens, D. A.; Comer, W. T.; Dietchman, D.; Ferguson, H. C.; Seidehamel, R. J.; Young, J. R. J. Med. Chem. 1973, 16, 901. (b) Weinstock, L. M.; Davis, P.; Handelsman, B.; Tull, R. J. Org. Chem. 1967, 32, 2823.
- (4) Lucet, D.; Le Gall, T.; Mioskowski, C. Angew. Chem. Int. Ed. 1998, 37, 2580.
- (5) See, for example: (a) Sigman, M. S.; Vachal, P.; Jacobsen, E. N. Angew. Chem. Int. Ed. 2000, 39, 1279. (b) Takamura, M.; Hamashima, Y.; Usuda, H.; Kanai, M.; Shibassaki, M. Angew. Chem. Int. Ed. 2000, 39, 1650. (c) Corey, E. J.; Grogan, M. J. Org. Lett. 1999, 1, 157. (d) Ishitani, H.; Komiyama, S.; Hasegawa, Y.; Kobayashi, S. J. Am. Chem. Soc. 2000, 122, 762. (e) Ooi, T.; Uematsu, Y.; Maruoka, K. J. Am. Chem. Soc. 2006, 128, 2548.
- (6) For reviews on asymmetric α -amination reactions, see: (a) Genet, J.-P.; Greck, C.; Lavergne, D. Modern Amination Methods; Ricci, A., Ed.; Wiley-VCH: Weinheim, 2000, Chap. 3. (b) Greck, C.; Drouillat, B.; Thomassigng, C. Eur. J. Org. Chem. 2004, 1377. (c) Erdik, E. Tetrahedron 2004, 60, 8742. (d) Janey, J. M. Angew. Chem. Int. Ed. 2005, 44, 42.92

- (7) For 1,3-dicarbonyl compounds, see: (a) Juhl, K.; Jørgensen, K. A. J. Am. Chem. Soc. 2002, 124, 2420. (b) Marigo, M.; Juhl, K.; Jørgensen, K. A. Angew. Chem. Int. Ed. 2003, 42, 1367. (c) Ma, S.; Jiao, N.; Zheng, Z.; Ma, Z.; Lu, Z.; Ye, L.; Deng, Y.; Chen, G. Org. Lett. 2004, 6, 2193. (d) Pihko, P. M.; Pohjakallio, A. Synlett 2004, 2115. (e) Xu, X.; Yabuta, T.; Yuan, P.; Takemoto, Y. Synlett 2006, 137. (f) Kang, Y. K.; Kim, D. Y. Tetrahedron Lett. 2006, 47, 4565. (g) Terada, M.; Nakano, M.; Ube, H. J. Am. Chem. Soc. 2006, 128, 16044. (h) Comelles, J.; Pericas, A.; Moreno-Manas, M.; Vallribera, A.; Drudis-Sole, G.; Lledos, A.; Parella, T.; Roglans, A.; Garcia-Grands, S.; Roces-Fernandez, L. J. Org. Chem. 2007, 72, 2077. (i) Mashiko, T.; Hara, K.; Tanaka, D.; Fujiwara, Y.; Kumagai, N.; Shibasaki, M. J. Am. Chem. Soc. 2007, 129, 11342.
- (8) For β-ketophosphonates, see: (a) Kim, S. M.; Kim, H. R.; Kim, D. Y. *Org. Lett.* **2005**, *7*, 2309. (b) Bernardi, L.; Zhuang, W.; Jørgensen, K. A. *J. Am. Chem. Soc.* **2005**, *127*, 5772.
- (9) For α-cyanoacetates, see: (a) Saaby, S.; Bella, M.;
 Jørgensen, K. A. J. Am. Chem. Soc. 2004, 126, 8120.
 (b) Liu, X.; Li, H.; Deng, L. Org. Lett. 2005, 7, 167.
 (c) Liu, Y.; Melgar-Fernandez, R.; Juaristi, E. J. Org. Chem. 2007, 72, 1522. (d) Hasegawa, Y.; Watanabe, M.; Gridnev, I. D.; Ikariya, T. J. Am. Chem. Soc. 2008, 130, 2158.
- (10) For catalytic asymmetric reactions of α-cyanoketones, see:
 (a) Wang, Y.; Liu, X.; Deng, L. *J. Am. Chem. Soc.* 2006, *128*, 3928. (b) Wang, B.; Wu, F.; Wang, Y.; Liu, X.; Deng, L. *J. Am. Chem. Soc.* 2007, *129*, 768. (c) Nojiri, A.; Kumagai, N.; Shibasaki, M. *J. Am. Chem. Soc.* 2008, *130*, 5630.
- (11) (a) Kim, D. Y.; Park, E. J. Org. Lett. 2002, 4, 545. (b) Kim, D. Y.; Choi, Y. J.; Park, H. Y.; Joung, C. U.; Koh, K. O.; Mang, J. Y.; Jung, K.-Y. Synth. Commun. 2003, 33, 435.
 (c) Park, E. J.; Kim, M. H.; Kim, D. Y. J. Org. Chem. 2004, 69, 6897. (d) Park, E. J.; Kim, H. R.; Joung, C. W.; Kim, D. Y. Bull. Korean Chem. Soc. 2004, 25, 1451. (e) Kim, D. Y.; Huh, S. C. Bull. Korean Chem. Soc. 2004, 25, 347.
 (f) Kang, Y. K.; Cho, M. J.; Kim, S. M.; Kim, D. Y. Synlett 2007, 1135. (g) Cho, M. J.; Kang, Y. K.; Lee, N. R.; Kim, D. Y. Bull. Korean Chem. Soc. 2007, 28, 2191. (h) Kim, S. M.; Kang, Y. K.; Cho, M. J.; Mang, J. Y.; Kim, D. Y. Bull. Korean Chem. Soc. 2007, 28, 2435.

- (12) (a) Fujii, A.; Hagiwara, E.; Sodeoka, M. J. Am. Chem. Soc. 1999, 121, 5450. (b) Hamashima, Y.; Yagi, K.; Takano, H.; Tamas, L.; Sodeoka, M. J. Am. Chem. Soc. 2002, 124, 14530. (c) Li, K.; Hii, K. K. Chem. Commun. 2003, 1132. (d) Li, K.; Horton, P. N.; Hursthouse, M. B.; Hii, K. K. J. Organomet. Chem. 2003, 665, 250. (e) Kim, S. M.; Kim, H. R.; Kim, D. Y. Org. Lett. 2005, 7, 2309. (f) Kim, H. R.; Kim, D. Y. Tetrahedron Lett. 2005, 46, 3115. (g) Kim, S. M.; Kang, Y. K.; Lee, K.; Mang, J. Y.; Kim, D. Y. Bull. Korean Chem. Soc. 2006, 27, 423. (h) For an aquapalladium complex, see: Shimada, T.; Bajracharya, G. B.; Yamamoto, Y. Eur. J. Org. Chem. 2005, 59; and references cited therein. (i) Vicente, J.; Arcas, A. Coord. Chem. Rev. 2005, 249, 1135. (j) For Pd(II) chemistry, see: Tsuji, J. Palladium Reagents and Catalysts: New Perspectives for 21st Century; John Willey and Sons: Chichester, 2004.
- (13) General Procedure for the Amination of α -Cyanoketone To a stirred solution of α -cyanoketone **3** (0.2 mmol) and catalyst **1a** (BF₄) (9.6 mg, 0.01 mmol) in acetone (2 mL) was added *tert*-butyl azodicarboxylate (**4d**, 46 mg, 0.2 mmol) at r.t. The reaction mixture was stirred for 10 min to 20 h at r.t. The mixture was diluted with sat. NH₄Cl solution (10 mL) and extracted with EtOAc (2 × 10 mL). The combined organic layers were dried over MgSO₄, filtered, concentrated, and purified by flash chromatography (EtOAc–hexane, 1:3) to afford the α -aminated α -cyanoketone **5**.
 - 2-Aminated 2-Cyano-1-indanone 5a

$$\begin{split} & [\alpha]_D{}^{22}-21.5~(c~1.45,~\text{CHCl}_3,~92\%~\text{ee}).~^{1}\text{H}~\text{NMR}~(200~\text{MHz},\\ & \text{CDCl}_3):~\delta=7.90-7.82~(m,1~\text{H}),~7.74-7.66~(m,1~\text{H}),~7.56-\\ & 7.43~(m,2~\text{H}),~7.01~(br~s,1~\text{H}),~4.07-3.83~(m,2~\text{H}),~1.62-\\ & 1.22~(m,18~\text{H}).~^{13}\text{C}~\text{NMR}~(50~\text{MHz},~\text{CDCl}_3):~\delta=190.1,\\ & 155.5,~149.3,~136.9,~136.6,~132.2,~128.6,~126.5,~125.9,\\ & 115.6,~84.3,~82.2,~68.4,~40.9,~28.2,~27.8.~\text{MS}~(\text{MSI}):~m/z\\ & (\%)=387~[\text{M}^+],~356~(10),~332~(70),~275~(32),~232~(8),~213\\ & (12),~188~(7.5),~158~(8).~\text{ESI-HRMS}:~m/z~\text{calcd for}\\ & \text{C}_{20}\text{H}_{25}\text{N}_3\text{O}_5~[\text{M}]^+:~387.1794;~\text{found}:~387.1802.~\text{HPLC}\\ & (\text{hexane}-i\text{-PrOH},~8:2,~254~\text{nm},~1.0~\text{mL/min},~\text{Chiralpak}~\text{AD}\\ & \text{column}):~t_{\text{R}}=5.8~\text{min}~(\text{minor}),~t_{\text{R}}=7.7~\text{min}~(\text{major}). \end{split}$$

Copyright of Synlett is the property of Georg Thieme Verlag Stuttgart and its content may not be copied or emailed to multiple sites or posted to a listserv without the copyright holder's express written permission. However, users may print, download, or email articles for individual use.