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Two novel rhodamine-perylenediimide fluorescent probes:
Synthesis, photophysical properties, and cell imaging
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A B S T R A C T

In this study, two novel dual-switch fluorescent chemosensors based on rhodamine-peryleneiimide

have been designed and synthesized. The dual-switching behaviors of the sensors were based on the

structural transformations of rhodamine and an intramolecular photoinduced electron transfer (PET)

process from rhodamine to perylenediimide. These probes exhibited excellent sensitivity to protons

with enhanced fluorescence emission from 500 to 580 nm. The fluorescence changes of probes were

reversible within a wide range of pH values from 2.0 to 11.0. Moreover, the sensors exhibited high

selectivity, short response time, and long lifetime toward protons. The possible mechanism was

investigated by the DFT calculation and 1H NMR. According to the experiment of confocal laser scanning

microscopy, these probes could be used to detect the acidic pH variations in living cells.

� 2016 Chinese Chemical Society and Institute of Materia Medica, Chinese Academy of Medical Sciences.

Published by Elsevier B.V. All rights reserved.
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1. Introduction

As common cations, protons play key roles in both of
metabolism and cellular events, such as cell growth, calcium
regulation chemotaxis, and cell adhesion [1]. Many detection
methods in the determination of pH have resulted in the research
of pH sensors [2–11]. Among these methods, fluorescent probes
are regarded as outstanding detection systems due to their terms
of high sensitivity, selectivity, and more convenient operation in
many applications [12–14]. So far, strenuous efforts have been
made to the development of efficient fluorescent chemosensors for
the detection of pH [15–19]. Rhodamine derivatives have been
widely used for detection of various metal ions due to their high
photostability, high quantum yield, and special structure [20–27].
The sensing mechanism is based on fluorescence enhancement
caused by spirolactam ring-opening of rhodamine derivatives
[28]. The spirolactam structure is also sensitive to the pH value
of the environment. Under neutral or basic conditions, the
spirolactam remains closed and the rhodamine derivatives
are non-fluorescent, while under acidic conditions, proton leads
to spirolactam ring-opening and the rhodamine derivatives
exhibit strong fluorescence emission [29–31]. Thus, rhodamine
50
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derivatives are suitable to monitor the pH value in acidic
environment with enhanced fluorescence signals. This type of
rhodamine-based pH probes have been prepared and attained
considerable effects [30–34], while pH-sensitive rhodamine
derivatives as pH fluorescence probes are less common. Among
these rhodamine-based probes, dual-switch pH sensors that emit
fluorescence with dual emission wavelengths and enable a built in
correction for the undesired environmental effects have received
more and more concerns.

Perylene tetracarboxylic diimides (PDI) have also generated
great interest in the fields of sensors because of their excellent
photo-stability, chemical stability, and high electron-accepting
ability [35–44]. Most perylenediimide fluorometric sensors were
designed to sense photophysical changes produced upon com-
plexation, including photoinduced electron transfer (PET), intra-
molecular charge transfer (ICT) [45], and fluorescence resonance
energy transfer (FRET) [46]. In these sensors, the PET-based PDI
fluorometric sensors [47,48] have been widely utilized in the
design of sensors due to the inherently higher sensitivity of PET in
comparison with the normal fluorescence quenching motif.
However, PET-based PDI fluorometric sensors with dual-switch
sensor for proton have not been reported before.

Herein, based on the unique structural transformations of
rhodamine in acid media and the high electron-accepting ability of
PDI, two novel dual-switch fluorescent probes 4 and 5 were
designed and synthesized as shown in Fig. 1. In these probes,
the perylene diimide chromophore plays as an electron acceptor;
vel rhodamine-perylenediimide fluorescent probes: Synthesis,
, http://dx.doi.org/10.1016/j.cclet.2016.01.039
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Fig. 1. Structure of the compounds 4 and 5.
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e rhodamine units serve as electron donors, and the ethylene-
amine plays as spacer, which separates the two units. In order to
prove the solubility of PDI-core in probes, two PDI cores have
en prepared via modifying the bay region of perylene diimides
ith 4-tert-butylphenol. In these cases, A PET process can occur
companying with the spirolactam ring-opening of rhodamine.
e probes represent off-state when the rhodamine units are in
irocyclic, the protonation coordination of the amine fluorophore
ould generate the rhodamine ring-open. At the same time, the
T process should be blocked and the probes represented
witched on’’ state.

 Experimental

1. Materials

Commercially available Rhodamine B, ethylenediamine and
rylene-3,4:9,10-tetraboxylic acid bisanhydride were used

ithout purification. The starting compounds 3 [49] and (1,7-
s(4-tert-butylphenyloxy)perylene-3,4:9,10-tetracarboxylic acid
sanhydride) 2 [50,51] were prepared according to the reported
ocedures. All solvents used in spectroscopic measurements
ere of analytical grade. Reactions were monitored by thin layer
romatography using Merck TLC Silica gel 60 F254. Silica gel
lumn chromatography was performed over Merck Silica
l 60. Dilute hydrochloric acid or sodium hydroxide was used
r tuning pH values.

2. Methods

1H NMR and 13C NMR spectra were recorded on a Bruker DMX
0 NMR spectrometer and a Bruker ADVANCE 500 NMR
ectrometer in CDCl3 with tetramethylsilane (TMS) as internal
andard. Mass spectra were recorded on Agilent Technologies
30 Accurate-Mass Q-TOF LC/MS. HRMS were recorded on an
traflex II MALDI-TOF mass spectrometer. UV-visible absorption
ectra were determined on a Shimadu UV-3600 spectrophotom-
er. Fluorescence spectra were measured on a HORIBA FL-4 Max
ectrometer. FT-IR spectra were recorded on a Nicolet 750 series

 the region of 4000–400 cm�1 using KBr pellets. DFT calculations
 compounds were performed using the Gaussian 03 program
ckage. The calculations were optimized at the B3LYP/6- 31G (d)

vel of theory. The molecular orbitals were visualized using
ussView.

3. Synthesis of amino-functional rhodamine B (3)

Rhodamine B 5.0 g (11.2 mmol) and ethylenediamine 9.0 mL
34.8 mmol) were dissolved in ethanol (50 mL) in a 250 mL flask,
en the mixture was heated at 80 8C for 7 h. After ethanol was
moved under vacuum, the residue was purified by column
Please cite this article in press as: H.-R. Cheng, Y. Qian, Two n
photophysical properties, and cell imaging, Chin. Chem. Lett. (2016
chromatography on silica gel (CH2Cl2/MeOH, 10:1) to give 3 as a
pale yellow powder 4.7 g, yield: 85%. M.p. 216�218 8C (the
reference value 217�219 8C), yield: 75%. 1H NMR (CDCl3, ppm): d
7.89 (m, 1H), 7.42 (m, 2H), 7.07 (m, 1H), 6.40 (dd, J = 8.9, 2.6 Hz,
4H), 6.26 (dd, 2H, J = 8.8, 2.7 Hz), 3.32 (m, 8H), 3.18 (t, 2H,
J = 6.6 Hz), 2.40 (t, 2H, J = 6.6 Hz), 1.15 (t, 12H, J = 6.9 Hz).

2.4. Synthesis of 1,7-Bis(4-tert-butylphenyloxy)perylene-3,4:9,10-

tetracarboxylic Acid Bisanhydride (2)

(1) A mixture of 5.0 g (13 mmol) of perylene-3,4:9,10-tetraboxylic
ove
), h
acid bisanhydride (1) and sulfuric acid (100 mL) was stirred at
50 8C for 12 h, and subsequently I2 (0.56 g) was added. The
reaction mixture was heated to 80 8C, and bromine 2.2 g
(15 mmol) was added dropwise over a time period of 2 h.
After bromine addition, the reaction mixture was heated for
an additional 48 h, the excess bromine was removed by
saturated aqueous solution of K2CO3, and water (100 mL) was
added carefully. The precipitate was separated by filtration,
washed with water (100 mL), and dried in a vacuum to give a
red powder 6.0 g. Without further purification it was used to
the next reaction.
(2) A mixture of compound 1,7-dibromoperylene-3,4:9,10-tetra-
carboxylic acid bisanhydride 2.0 g (3.6 mmol), 4-tert-butyl-
phenol 1.8 g (12.0 mmol), and K2CO3 2.4 g (6.8 mmol) in dry
DMF (120 mL) was heated at the refluxing temperature for 4 h
under an N2 atmosphere. The reaction mixture was poured into
water (100 mL) and neutralized with aqueous 1.2 N HCl
solutions. The formed precipitate was collected by filtration
and washed with water and methanol to give crude product 2
3.1 g, yield: 92%. As this product showed poor solubility in
common organic solvents, it was used for the next reaction
without further purification.

2.5. Rhodamine-perylenediimide (4)

Compound 3 1.1 g (2.3 mmol), compound 2 0.42 g (0.6 mmol),
and N (C3H7)3 (0.5 mL) were dissolved in DMF (25 mL), the mixture
was heated at 120 8C for 12 h under nitrogen and the reaction was
followed by TLC (DCM: Methanol = 10:1). On completion of the
reaction the solvent was removed under reduced pressure, a red-
black solid got, washed with waters (100 mL), dry in 60 8C, a more
rigorous purification was then carried out via column chromatog-
raphy (DCM/Methanol = 20:1) to give a purple solid 4 0.79 g, yield:
80%. m.p. > 300 8C. FT-IR (KBr, cm�1): 3422 (nNH), 2950–2863
(nCH), 1696 (nas

N-C=O), 1665 (ns
N-C=O), and 1578(nN-C=O). 1H NMR

(CDCl3, ppm): d 8.53(s, 2H), 8.33 (d, 4H, J = 8.1 Hz), 7.79�7.71 (m,
2H), 7.43�7.41 (m, 8H), 7.14 (s, 2H), 7.05 (d, 2H, J = 6.0 Hz), 6.96 (d,
4H, J = 8.4 Hz), 6.62�6.60 (m, 4H), 6.43�6.40 (m, 4H), 6.29�6.26
(m, 4H), 3.74 (t, 4H, J = 4.5 Hz), 3.52 (t, 4H, J = 4.5 Hz), 3.28 (m,
16H), 1.65 (s, 18H), 1.13 (t, 24H, J = 6.3 Hz); 13C-NMR (CDCl3): d
168.4 163.2, 155.7, 153.8, 152.8, 147.0, 132.8, 131.1, 128.8, 127.8,
126.5, 123.7, 122.9, 122.7, 120.1, 119.5, 119.2, 44.4, 44.3, 44.2, 39.4,
34.3, 31.6, 31.4, 29.6, and 12.5. MALDI-TOF-MS: m/z. Calculated:
[M + H]+ = 1621.7635, found: 1621.7639.

2.6. Compound 5 was prepared according the same method of

compound 4

A oxblood red solid 5 was got 1.1 g, yield: 84%.
m.p. = 292�294 8C. FT-IR (KBr, cm�1): 3423 (nNH), 2969–2863
(nCH), 1695(nas

N-C=O), 1616(ns
N-C=O), 1592(nN-C=O). 1H NMR

(300 MHz): d 8.45 (m, 8H, J = 8.1 Hz), 7.94�7.85 (m, 2H),
7.45�7.36 (m, 4H), 7.02 (dd, 2H, J = 5.1, 4.2 Hz), 6.5 (d, 4H,
J = 8.7 Hz), 6.31 (d, 4H, J = 2.1 Hz), 6.03 (dd, 4H, J = 8.7, 1.8 Hz), 4.25
(t, 4H, J = 3.2 Hz), 3.57 (t, 4H, J = 3.2 Hz), 3.12 (m, 16H), 1.04 (t, 24H,
l rhodamine-perylenediimide fluorescent probes: Synthesis,
ttp://dx.doi.org/10.1016/j.cclet.2016.01.039
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Scheme 1. Synthesis of 1,7-bis(4-tert-butylphenyloxy)perylenediimide 2.

Scheme 2. Synthesis of the probes 4 and 5.
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J = 6.9 Hz); 13C-NMR (CDCl3): d 168.8, 162.5, 153.4, 148.6, 135.4,
135.4, 134.1, 132.6, 132.3, 132.1, 131.2, 130.8, 131.3, 128.0, 127.8,
126.4, 124.4, 123.7, 123.3, 122.7, 129.8, 118.3, 108.0, 97.8, 77.4,
77.0, 76.5, 73.6, 61.6, 58.8, 45.8, 41.5, 38.8, and 12.5. MALDI-TOF-
MS: m/z. Calculated: [M + H]+ = 1325.5859, found: 1325.5854.

3. Results and discussion

3.1. Synthesis of probe molecules 5 and 4

Compounds 2, 4, and 5 were synthesized via simple steps using
standard organic reactions, as depicted in Schemes 1 and 2. Details
of the synthesis of compounds 4 and 5 have been discussed above.
Compound 2 was synthesized by refluxing 1,7-dibromoperylene-
3,4:9,10-tetracarboxylic acid bisanhydride and 4-tert-butylphenol
in DMF, as its poor solubility in common organic solvents, it was
used for the next reaction without further purification. Compounds
4 and compound 5 were prepared by refluxing compounds 3 and 2
in imidazole in the presence of NEt3, their yields were 80% and 82%,
respectively. All of the new compounds were fully characterized by
FT-IR, 1H NMR, 13C NMR and high-resolution mass spectrometry
(HRMS-MALDI-TOF).

3.2. The pH dependence of absorption and fluorescence spectra of

compounds 4 and 5

Fig. 2 presents the absorption spectra of compounds 4 and 5 in
DMSO/H2O at different pH values. The maximum absorption peaks
of probe 4 are at 480 and 530 nm, which are corresponding to the
absorption of rhodamine and PDI units in probes, respectively. As
shown in Fig. 2-left the absorption spectra of probe 4 showed
nearly no changes when the pH value > 7.0, which is ascribed to its
spirolactam form of probe in solution; while the pH decreases to
pH value < 7.0 the absorption intensity of probe 4 at 530 nm and
480 nm increases, respectively. Meanwhile, an obvious absorption
blue shifts generates, indicating the formation of the ring-opened
amide form of rhodamine units in probe 4. The nearly same results
can be obtained in the probe 5 (Fig. 2 right). The synchronous
changes of absorption spectra at 480 nm and 530 nm maybe can
prove the dual-switch process happened in the probes.

The pH dependence of fluorescence spectra of compounds 4 and
5, obtained after excitation within the spectral region of maximal
absorption of the peripheral fluorophore (lex = 480 or 530 nm),
show two emission bands at 550 nm and 580 nm, corresponding to
the emission bands of rhodamine units and the PDI core in
compounds 4 and 5 as shown in Fig. 3. The corresponding data is
showed in Table 1. From the insets photons, we can see that the
300 360 420 480 540 60 0
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Fig. 2. The pH dependence of absorption spectra of com
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probe 4 is non-fluorescent when the pH value > 7.0, when the
value of the pH falls to less than 7.0, the fluorescence intensity
gradually increases to about 170-fold from pH 7.8 to 5.4. The
quantum yield of the probe 4 is determined to be 0.46 in acidic
condition (pH 5.1) and < 0.01 in neutral condition with rhodamine
6G as a standard [52]. The similar results can be obtained for
compound 5, as shown in Fig. 3 right. Compared with to the
fluorescent spectra of the two probes, the nearly same results can
be obtained in probes 4 and 5, which can be attributed to the nearly
same molecular structure of probes. As shown in Fig. 3, the
synchronous enhanced fluorescence intensity of probes to
the various pH values at 550 nm and 580 nm further prove that
the dual-switch processes exactly happened in the probes.

log
IFmax�IF

IF�IFmin

� �
¼ pH�pKa (1)
300 36 0 420 480 54 0 600
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pounds 4 and 5 (c = 10 mmol/L, in DMSO/H2O, 1:9).

vel rhodamine-perylenediimide fluorescent probes: Synthesis,
, http://dx.doi.org/10.1016/j.cclet.2016.01.039
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Fig. 3. The pH dependence of fluorescence spectra of compounds 4 and 5 (c = 10 mmol/L, lex = 480 nm, in DMSO/H2O, 1:9). Inset: fluorescence intensity of probes at various

pH values.

Table 1
Fluorescent properties of compounds 4 and 5 in DMSO/H2O, 1/9.

Compounds pH lmax
1abs e1ð Þ/almax

2abs e2ð Þ l1 flu/l2 flu (nm) b Dv1/Dv2 (nm) c F1
ex/F2

ex d

4 7.8 496/531 554/587 58/56 –

4-H+ 5.1 486/521 554/587 68/66 0.46/0.38

5 7.8 491/526 544/582 53/56 –

5-H+ 5.1 491/526 544/582 53/56 0.42/0.36

The fluorescence quantum yields were determined using rhodamine 6G (F = 0.95 in ethanol) as a standard.

The max absorption was used as the excited wavelength.
a Absorption maximum.
b Emission maximum.
c Stoke’s shift.
d Fluorescence quantum yield. lex = 480 nm, (l, Dv, F, E, t)1 = Rh units in probe, (l, Dv, F, E, t)2 = PDI unit in probe.
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The abilities of the probes to recognize proton were also
vestigated. From Fig. 3, it can be seen that the linear response
nge covers the acidic pH range from 5.1 to 7.0. The acidity
nstants apparent pKa of probes 4 and 5 were determined by
orimetric titration as a function of pH, taking the part of the inset

aph in Fig. 3 located between pH 5.1 and 7.0, the pKa values of
e light harvesting probes 4 and 5 have been calculated by Eq. (1)
3]. The calculated pKa values are 6.12 and 6.30 for probes 4 and 5,
spectively. These pKa values prove that the probes are valuable
r the study of acidic environment.
Fig. 4. Photo-induced electron transfer (

Please cite this article in press as: H.-R. Cheng, Y. Qian, Two n
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3.3. Sensing mechanism and DFT calculations

In these probes, there are two important factors that lead to the
fluorescence quenching of compounds 4 and 5. The first factor is
that the PET process from the rhodamine units to the perylene-
diimide core in probes. The other is the closed spirolactam of the
rhodamine units in the probes as shown in Fig. 4. Therefore, while
the pH decreased to pH value < 7.0 the PET process in probes was
pressed and the fluorescence of PDI core in probe recovered.
Meanwhile, the closed spirolactam of the rhodamine units in the
PET) process for the proposed sensors.

ovel rhodamine-perylenediimide fluorescent probes: Synthesis,
), http://dx.doi.org/10.1016/j.cclet.2016.01.039
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probes also opened, the probes show strong fluorescence with dual
emission wavelength at 550 nm and 580 nm. The fluorescence
response processes of probes proved that the design of the dual-
switch state is favorable for the probe to work as a pH indicator.
Moreover, the ring-open of rhodamine can be confirmed by 1H
NMR, a new multiplet around 9.6 ppm is assigned to ring-open of
probe 4 (Fig. S5 in supporting information).

DFT calculations were performed to understand the PET
progress of 4 at the molecular level. The HOMOs and LUMOs of
model compounds 4 and 4-H+ are showed in Fig. S10. The LUMOs
(–5.44 eV) of model compound 4 are evenly delocalized over the
rhodamine units and its HOMOs (–10.9072 eV) are mainly
delocalized over perylenediimide units. On the other hand, The
HOMOs (–8.3504 eV) of model compound 4-H+ are mainly
delocalized over rhodamine units and its LUMOs (–2.2848 eV)
are mainly delocalized over perylenediimide unit. Meanwhile, in
order to understand the PET process, three model compounds 6, 7,
and 8 (Fig. 5) are used for DFT calculations. The Optimized
geometries and calculated HOMO and LUMO density maps are
showed in Fig. 6. The calculated HOMOs of compounds 7 and 8 are
law compared with to that of compound 6. These results reflect
that the energy level of PDI units in probe 4 in acid environment
changes higher than the HOMOs of PDI units in probe 4 in neutral
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environment. So, it can be concluded that the PET of probes can be
repressed in acid environment.

3.4. Interference of metal cations in the fluorescence intensity of dyes

Fig. 7 shows the selectivity of probes 4 and 5 to various ions,
respectively. Upon addition of Hg2+, Na+, K+, Ca2+, Mg2+, Co2+, Ni2+,
Cu2+, Zn2+, Mg2+, Pd2+, Pb2+, Fe2+, Mn2+, and Al3+ ions to the
10 mmol/L probe solutions, no significant fluorescence intensity
changes were observed. However, the same amount of H+ led to a
remarkable enhancement in fluorescence intensity, and the
fluorescence intensity changes caused by H+ are not obviously
influenced by the coexisting metal ions such as Hg2+, Na+, K+, Ca2+,
Mg2+, Co2+, Ni2+, Cu2+, Zn2+, Mg2+, Pd2+, Pb2+, Fe2+, Mn2+, and Al3+

ions. Meanwhile, the fluorescence spectra of probes 4 and 5 to the
mixture of various metal salts were showed in Fig. 8. The results
indicate that probes 4 and 5 have high selectivity to protons in the
presence of other metal ions.

3.5. Reproducibility, reversibility, and response time

In order to study the response time, and reversibility of the
sensors, the reversible nature of the sensors were examined by
recording the ratio of fluorescence intensity at 550 nm with
respect to the change of pH from acidic (pH 2.0) to alkaline (pH 7.8)
range and vice versa up to 7 cycles. Fig. 9 shows the fluorescence
intensity change with time upon switching from one solution to
the other. The relative standard deviations from seven measure-
ments for blank solution of pH 7.0 was found to be 0.1% and the
relative standard deviations in fluorescence intensities recorded
from five replicates of pH 2.0 was estimated as 1.1%. The response
time were 5–8 s for probes of pH 2.0, meanwhile, it was found that
the recovering time was independent of the H+ concentration
change. Results indicate the reversibility between the protonated
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d deprotonated forms of the sensors. Thus the sensors might be
plicable for real time pH monitoring.

6. Long-time stability and lifetime

To investigate the short-term stability of the sensors, the
orescence intensity of the sensors exposed to solution of pH

0 and 7.8 were tested over a period of seven days. The
orescence emission intensities were recorded every 24 h. As
own in Fig. 10, the relative standard error of < 1% was obtained
r the solution. The solution exhibits good stability and has a
etime of at least one month. Thus, the probes have remarkably
ng lifetime.

7. Confocal fluorescence images

HeLa cell was cultured in media (RPMI 1640 supplemented
ith 10% PBS, 100 units/mL of penicillin and 100 units/mL of
reptomycin) at 37 8C in a humidied incubator, and culture
edia were replaced with fresh media every day. The utilities of
obes 4 and 5 in living cells were studied. The HeLa cell lines
ere incubated with receptor probes [1.0 mmol/L in DMSO/H2O
:9, v/v) buffered with HEPES, pH 7.0] in a RPMI-1640 medium
r 1 h at 37 8C and washed with a phosphate-buffered saline
BS) buffer (pH 7.2) to remove excess receptor 4 or 5. The cells
ere then treated with pH 5.8 in the RPMI-1640 medium,
Please cite this article in press as: H.-R. Cheng, Y. Qian, Two n
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incubated again for 30 min at 37 8C, and washed with a PBS
buffer. After treatment with pH 5.8 in the RPMI-1640 medium,
confocal fluorescence images were studied, the cells show
enhanced red fluorescence emission as shown in Fig. 11-B and
D. These results suggested that probes 4 and 5 are effective dual-
switch fluorescent pH probes intracellular imaging.
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4. Conclusion

In summary, two novel pH fluorescent chemosensors based on
rhodamine-perylenediimide have been designed, synthesized, and
fully characterized by 1H NMR, 13C NMR, and HRMS-MALDI-TOF.
The dual-switches of the sensors were based on the structural
transformation of rhodamine units and an intramolecular photo-
induced electron transfer (PET) process that occurred with the
switching effects of rhodamine units in the probes. These probes
showed excellent fluorescent sensitivity for protons with en-
hanced emission from 550 to 580 nm. The fluorescence changes of
probes 4 and 5 were reversible within a wide range of pH values
from 2.0 to 11.0. Furthermore, the sensors exhibited short response
time, long lifetime, and high selectivity toward protons in the
presence of various other metal cations, such as Hg2+, Fe3+, Cu2+,
Mg2+, Ca2+, Mn2+, Co2+, Ni2+, Zn2+, Cd2+, Ba2+, and Pb2+. The possible
mechanism was investigated by the DFT calculation and 1H NMR.
According to the experiments of confocal laser scanning micros-
copy, compounds 4 and 5 could be used to detect the acidic pH
variations in living cells with an effective dual-switches fluores-
cent signal. Thus, we are convinced that the design strategy will
help to develop a new platform for the design of new dual-switches
fluorescent probes for other target analytes.
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