Formation and Structures of Hafnocene Complexes in MAO- and AlBuⁱ₃/CPh₃[B(C₆F₅)₄]-Activated Systems

Konstantin P. Bryliakov,^{*,†} Evgenii P. Talsi,[†] Alexander Z. Voskoboynikov,[‡] Simon J. Lancaster,[§] and Manfred Bochmann^{*,§}

Boreskov Institute of Catalysis, Siberian Branch of the Russian Academy of Sciences, 630090, Novosibirsk, Russian Federation, Department of Chemistry, Moscow State University, Lomonosovsky Prospect 1, 113000 Moscow, Russian Federation, and Wolfson Materials and Catalysis Centre, School of Chemical Sciences and Pharmacy, University of East Anglia, Norwich NR4 7TJ, United Kingdom

Received July 12, 2008

The formation of cationic species relevant to olefin polymerization based on (SBI)HfCl₂, Me₂C(C₅H₄)(Flu)HfCl₂, Ph₂C(C₅H₄)(Flu)HfCl₂, and L'HfCl₂ activated by MAO, AlMe₃/CPh₃[B(C₆F₅)₄], and AlBuⁱ₃/CPh₃[B(C₆F₅)₄] (SBI = *rac*-Me₂Si(Ind)₂; L' = C₂H₄(Flu)(5,6-C₃H₆-2-MeInd)) was studied by ¹H, ¹³C, and ¹⁹F NMR spectroscopy. Thermally stable heterobinuclear intermediates of the type [LHf(μ -Me)₂AlMe₂]⁺[MeMAO]⁻ and [LHf(μ -Me)₂AlMe₂]⁺[B(C₆F₅)₄]⁻ were identified when using MAO and AlMe₃/CPh₃[B(C₆F₅)₄] as activators, respectively. The stability of these species explains the low productivity of hafnocene catalysts in the presence of AlMe₃-containing activators, compared to zirconocenes. By contrast, in the ternary systems LHfCl₂/AlBuⁱ₃/CPh₃[B(C₆F₅)₄] hydride species were detected that must be responsible for the formation of the highly active sites in olefin polymerization. The ionic hydrido species differ significantly in stability. The formation of the mixed-alkyl complex L'Hf(Me)CH₂SiMe₃ proceeds with surprisingly high diastereoselectivity; the sterically more hindered isomer is produced preferentially. It reacts with CPh₃[B(C₆F₅)₄] to afford the ion pair [L'Hf-CH₂SiMe₃]⁺[B(C₆F₅)₄]⁻ as two diastereomers that exist in dynamic equilibrium. The rates of site epimerization of this ion pair indicate only small energy differences between the two isomers.

Introduction

In the past few years, interest in hafnium-based metallocene and post-metallocene olefin polymerization catalysts has risen sharply, resulting in promising new findings.^{1–6} It was shown that ultrahigh molecular weight polypropylene elastomers could be prepared using highly active C_1 -symmetric hafnocene catalysts.^{1–3} Pyridyl-amide hafnium complexes were recently optimized for commercial high-temperature propylene polymerization.^{4–6} In addition, the latter catalysts have been applied in the high-volume preparation of olefin block copolymers through chain shuttling polymerization.⁷

Significantly, the aforementioned catalysts are effectively activated by mixtures of triisobutyl aluminum and cation-generating borates (e.g., AlBuⁱ₃/CPh₃[B(C₆F₅)₄]), whereas me-

(6) Boussie, T. R.; Diamond, G. M.; Goh, C.; Hall, K. A.; LaPointe, A. M.; Leclerc, M. K.; Lund, C.; Murphy, V. U.S. Pat. 7.018.949, 2006.

(7) Arriola, D. J.; Carnahan, E. M.; Hustad, P. D.; Kuhlman, R. L.;
 Wenzel, T. T. *Science* 2006, *312*, 714.

thylalumoxane (MAO) appeared to be an unexpectedly poor activator.¹⁻⁶ Similar differences in the catalytic productivity of AlBuⁱ₃/CPh₃[B(C₆F₅)₄]⁻ and MAO-activated systems were previously reported for some other C_{1^-} , C_{2^-} , and C_s -symmetric hafnocenes.⁸⁻¹⁰ Determining the origin of these differences is self-evidently an important task.

Previously, some of us have shown that heterobinuclear ion pairs [(SBI)Zr(μ -Me)₂AlMe₂]⁺[Me-MAO]⁻ are formed upon the activation of the C_2 -symmetric zirconocene (SBI)ZrCl₂ (SBI = *rac*-Me₂Si(Ind)₂) with MAO,^{11,12} whereas in the ternary catalytic system (SBI)ZrCl₂/AlBuⁱ₃/[CPh₃][B(C₆F₅)₄] the last confidently assigned precursor of the active species of polymerization was the binuclear complex [(SBI)Zr(μ -Cl)₂Zr(SBI)][B(C₆F₅)₄]₂.¹³ In addition, at high Al/Zr ratios (≥20), the hydride- and allylbridged heterobinuclear complex [(SBI)Zr(μ -H)(μ -C₄H₇)-AlBuⁱ₂][B(C₆F₅)₄] was identified, which is probably the thermodynamic sink of this catalyst system.¹³ A similar hydride-

(8) Seraidaris, T.; Kaminsky, W.; Seppälä, J.; Löfgren, B. *Macromol. Chem. Phys.* **2005**, *206*, 1319.

(9) Yano, A.; Sone, M.; Yamada, S.; Hasegawa, S.; Akimoto, A. Macromol. Chem. Phys. 1999, 200, 924.

(10) Seraidaris, T.; Puranen, A.; Karessoja, M.; Löfgren, B.; Repo, T.; Leskelä, M.; Seppälä, J. J. Polym. Sci. A: Polym. Chem 2006, 44, 4743.

^{*} Corresponding authors. (K.P.B.) Fax: +7 383 3308056. E-mail: bryliako@catalysis.ru. (M.B.) Fax: (+44) 1603 592044. E-mail: m.bochmann@uea.ac.uk.

[†] Boreskov Institute of Catalysis.

[‡] Moscow State University.

[§] University of East Anglia.

⁽¹⁾ Rieger, B.; Troll, C.; Preuschen, J. Macromolecules 2002, 35, 5742.

⁽²⁾ Hild, S.; Cobzaru, C.; Troll, C.; Rieger, B. Macromol. Chem. Phys. 2006, 207, 665.

⁽³⁾ Cobzaru, C.; Rieger, B. Macromol. Symp. 2006, 236, 151.

⁽⁴⁾ Boussie, T. R.; Diamond, G. M.; Goh, C.; Hall, K. A.; LaPointe,

A. M.; Leclerc, M. K.; Murphy, V.; Shoemaker, J. A. W.; Turner, H.; Rosen, R. K.; Stevens, J. C.; Alfano, F.; Busico, V.; Cipullo, R.; Talarico, G. Angew.

Chem., Int. Ed. **2006**, *45*, 3278. (5) Froese, R. D. J.; Hustad, P. D.; Kuhlman, R. L.; Wenzel, T. T. *J. Am.*

⁽b) Hoese, R. D. S. Histad, F. D., Kullman, R. E., Wenzel, T. T. S. Am. Chem. Soc. 2007, 129, 7831.

⁽¹¹⁾ Bryliakov, K. P.; Semikolenova, N. V.; Yudaev, D. V.; Zakharov, V. A.; Brintzinger, H. H.; Ystenes, M.; Rytter, E.; Talsi, E. P. J. Organomet. Chem. **2003**, 683/1, 92.

⁽¹²⁾ For related studies on the zirconocene/MAO system see also: (a) Tritto, I.; Donetti, R.; Sacchi, M. C.; Locatelli, P.; Zannoni, G. *Macromolecules* **1997**, *30*, 1247. (b) Babushkin, D. E.; Semikolenova, N. V.; Zakharov, V. A.; Talsi, E. P. *Macromol. Chem. Phys.* **2000**, *201*, 558. (c) Babushkin, D.; Brintzinger, H. H. *J. Am. Chem. Soc.* **2002**, *124*, 12869. (d) Babushkin, D.; Brintzinger, H. H. *Chem. Eur. J.* **2007**, *13*, 5294.

⁽¹³⁾ Bryliakov, K. P.; Talsi, E. P.; Semikolenova, N. V.; Zakharov, V. A.; Brand, J.; Alonso-Moreno, C.; Bochmann, M. J. Organomet. Chem. **2007**, *692*, 859.

Chart 1

bridged complex was earlier observed by Götz and co-workers in the reaction of the C_s -symmetric Ph₂C(Cp)(Flu)ZrCl₂ with AlBuⁱ₃ and [PhNMe₂H][B(C₆F₅)₄].¹⁴

In this work, the structures of the cationic metallocene species formed upon activation of C_2 -, C_s -, and C_1 -symmetric hafnocenes **1**-4 (Chart 1) with MAO and AlBuⁱ₃/CPh₃[B(C₆F₅)₄] were compared. Earlier studies on the use of Zr- and Hf-CH₂SiMe₃ complexes have established the role of this alkyl ligand as models for the metal-bound polymeryl chain and provided detailed information on the solution structure, ion aggregation, and dynamics of metallocene catalysts.¹⁵⁻¹⁷ We report here the synthesis of mixed-alkyl derivatives of the C_1 -symmetric complex **4**, together with the ligand dynamics of the ion pair derived from this ligand system on activation with AlBuⁱ₃/ CPh₃[B(C₆F₅)₄]. Under closely analogous conditions, hafnium was found to produce different resting states from zirconium.¹⁸

Results and Discussion

Activation of Hafnocene Dichlorides with MAO and AlMe₃/CPh₃[B(C₆F₅)₄]. On reacting (SBI)HfCl₂ (1) with an excess of MAO in toluene- d_8 , two types of intermediates were identified. The first one, predominating at Al/Hf ratios of 30–60, was identified as (SBI)HfMeCl. The second one (**5-MAO**) becomes the predominant species at an Al/Hf ratio of \geq 240. On the basis of its NMR data, **5-MAO** was identified as the heterobinuclear outer-sphere ion pair [(SBI)Hf(μ -Me)₂Al-Me₂]⁺[MeMAO]⁻ (Scheme 1). This compound proved thermally stable at room temperature for at least 1 day. It showed quite low activity for ethylene polymerization; only traces of polyethylene were detected in the sample after injecting 9 equiv of ¹³C₂H₄ and storing at –10 °C for 2 h.

For comparison, **1** was reacted with AlMe₃/CPh₃[B(C₆F_{5)4]} (Hf:Al:B = 1:30:1.1) to give [(SBI)Hf(μ -Me)₂AlMe₂]⁺-[B(C₆F₅₎₄]⁻ (**5-BX**₄) (Scheme 1). **5-BX**₄ is stable at room temperature for days. Addition of 3 equiv of propene to the [(SBI)Hf(μ -Me)₂AlMe₂]⁺[B(C₆F₅₎₄]⁻ species at low temperature (-40 °C) resulted in no monomer incorporation or propene consumption. Warming the sample in 10 °C steps led to the disappearance of the propene signals only at +20 °C, the spectrum of **5-BX**₄ remaining unchanged. Injection of 3 equiv of ¹³C₂H₄ into the sample containing [(SBI)Hf(μ -Me)₂AlMe₂]⁺[B(C₆F₅₎₄]⁻ at -10 °C showed slow ethylene consumption at this temperature; there was complete ¹³C₂H₄ conversion within ca. 2 h. Again the spectrum of **5-BX4** remained essentially unchanged, a typical behavior of these catalysts where the first insertion is rate limiting.¹⁹⁻²¹

The C_s -symmetric complexes **2** and **3** react with MAO and AlMe₃/CPh₃[B(C₆F₅)₄] in a similar manner: the monomethylated derivatives Me₂C(Cp)(Flu)HfMeCl and Ph₂C(Cp)(Flu)HfMeCl were detected as the main species at Al_{MAO}:Hf ratios of 90:1, while increasing the Al_{MAO}:Hf ratio to 300:1 led to quantitative formation of [Me₂C(Cp)(Flu)Hf(μ -Me)₂AlMe₂]⁺[MeMAO]⁻ (**6-MAO**) and [Ph₂C(Cp)(Flu)Hf(μ -Me)₂AlMe₂]⁺[MeMAO]⁻ (**7-MAO**), respectively. Activation with AlMe₃/CPh₃[B(C₆F₅)₄] gave [Me₂C(Cp)(Flu)Hf(μ -Me)₂AlMe₂]⁺[B(C₆F₅)₄]⁻ (**6-BX**₄) and [Ph₂C(Cp)(Flu)Hf(μ -Me)₂AlMe₂]⁺[B(C₆F₅)₄]⁻ (**7-BX**₄). In these *C_s*-symmetric examples, the two terminal Al-Me groups are inequivalent. All these heterobinuclear intermediates are thermally stable for at least 1 day at room temperature.

The spectra of the C_1 -symmetric complex **4** with MAO or AlMe₃/CPh₃[B(C₆F₅)₄] are more complicated. At Al/Hf ratios of 30–70, several (three or four) types of Hf complexes were found to coexist in comparable concentrations, whereas at Al/Hf ratios of 90:1 or higher, only one species, identified as [(L')Hf(μ -Me)₂AlMe₂]⁺[MeMAO]⁻(**8-MAO**)(L'=C₂H₄(Flu)(5,6-C₃H₆-2-MeInd)), was found to prevail and appeared to be stable for days in an NMR tube at room temperature. The interaction

⁽¹⁴⁾ Götz, C.; Rau, A.; Luft, G. J. Mol. Catal. A: Chem. 2002, 184, 95.
(15) Song, F.; Cannon, R. D.; Bochmann, M. Chem. Commun. 2004, 542

⁽¹⁶⁾ Song, F.; Lancaster, S. J.; Cannon, R. D.; Schormann, M.; Humphrey, S.; Zuccacia, C.; Macchioni, C.; Bochmann, M. *Organometallics* **2005**, *24*, 1315.

^{(17) (}a) Alonso-Moreno, C.; Lancaster, S. J.; Zuccaccia, C.; Macchioni,
A.; Bochmann, M. J. Am. Chem. Soc. 2007, 127, 9282. (b) Alonso-Moreno,
C.; Lancaster, S. J.; Wright, J. A.; Hughes, D. L.; Zuccaccia, C.; Correa,
A.; Macchioni, A.; Cavallo, L.; Bochmann, M. Organometallics,in press.
(c) For DFT calculations on the ion pair [(SBI)Zr-CH₂SiMe₃]⁺[B(C₆F₅)₄]⁻
see: (d) Ducère, J. M.; Cavallo, L. Organometallics 2006, 25, 1431.

⁽¹⁸⁾ For the reactions of Cp₂HfEt₂ with CPh₃[B(C₆F₅)₄] see: Bochmann, M.; Lancaster, S. J. J. Organomet. Chem. **1995**, 497, 55.

⁽¹⁹⁾ Review: Bochmann, M. J. Organomet. Chem. 2004, 689, 3982.

⁽²⁰⁾ Bochmann, M.; Jaggar, A. J.; Nicholls, J. C. Angew. Chem., Int. Ed. Engl. 1990, 29, 780.

^{(21) (}a) Fink, G.; Zoller, W. Makromol. Chem. 1981, 182, 3265. (b)
Fink, G.; Rottler, R. Angew. Makromol. Chem. 1981, 94, 25. (c) Fink, G.;
Schnell, D. Angew. Makromol. Chem. 1982, 105, 31. (d) Mynott, R.; Fink,
G.; Fenzl, W. Angew. Makromol. Chem. 1987, 154, 1. (e) Fink, G.; Fenzl,
W.; Mynott, R. Z. Naturforsch. Teil B 1985, 40b, 158.

Hafnocene Complexes in MAO-Activated Systems

of **4** with AlMe₃/CPh₃[B(C₆F₅)₄] (Hf:Al:B = 1:50:1.1) resulted in the formation of a brown oil containing cationic species identified as $[L'Hf(\mu-Me)_2AlMe_2]^+[B(C_6F_5)_4]^-$ (**8-BX**₄). The *C*₁ symmetry of **8-MAO** is reflected in the four separate ¹H NMR signals seen for the bridging and terminal Al-Me groups.

Raising the temperature leads to the coalescence of the ¹H peaks of the terminal AlMe₂ groups (at 343 K, apparent ΔG_{ex} = 17.5 kcal mol⁻¹), the bridging methyls remaining nonequivalent (see Supporting Information). It is poorly reactive toward propene: when ca. 3.5 equiv of propene was added to the solution of **8-BX**₄ at low temperature, complete consumption was achieved only after warming the sample above +20 °C.

The results confirm that the alkylation of hafnocenes with AlMe₃ proceeds in stages, first forming the monomethyl chloride, followed by dechlorination and formation of the heterobinuclear cation $[LHf(\mu-Me)_2AlMe_2]^+$. We note that higher Al_{MAO}:Hf ratios are generally needed for complete conversion ansa-hafnocenes to [LHf(u-Me)2of AlMe₂]⁺[MeMAO]⁻ (up to 240–300) than in the cases of *ansa*zirconocenes¹¹ and ansa-titanocenes,²² where Al_{MAO}:metal ratios of 100-200 were enough for complete conversion to the heterobinuclear species. The Hf ion pairs are poorly active in ethylene and propene polymerization. This is not unexpected taking into account the observed low productivity of the ansahafnocene/MAO systems in catalytic olefin polymerizations.1-6,23,24

Activation of (SBI)HfCl₂ with AlBuⁱ₃/CPh₃[B(C₆F₅)₄]. Most highly active borate-activated metallocene systems involve AlBuⁱ₃ as a component. It is therefore important to understand the nature of the active sites formed in the systems hafnocene/ AlBuⁱ₃/CPh₃[B(C₆F₅)₄] and thus answer the question of why activation with AlBuⁱ₃/CPh₃[B(C₆F₅)₄] leads to much more productive catalysts than MAO. To this end, the reactions of 1-4 with AlBuⁱ₃ in the presence and absence of CPh₃[B(C₆F₅)₄] were studied by ¹H and ¹³C NMR spectroscopy.

Initially the alkylation of **1** with AlBuⁱ₃ in the absence of trityl salt was probed. At room temperature, the monoalkylation equilibrium is established within 5 min, a 30-fold excess of AlBuⁱ₃ leading to a 2:3 mixture of (SBI)HfCl₂ and (SBI)Hf-(Buⁱ)Cl. One can see that (SBI)HfCl₂ requires a much higher Al:metal ratio for monoalkylation than (SBI)ZrCl₂ (for the latter, 5 equiv of AlBuⁱ₃ gave 90% monoalkyl product).¹³ That is why relatively high Al:Hf ratios (generally 30–50 and 10 in some cases) were used in subsequent experiments.

The reaction of **1** with AlBuⁱ₃/CPh₃[B(C₆F₅)₄] (Hf:Al:B = 1:10-50:1.1 gave a red oil, which precipitated to the bottom of the NMR tube. The upper (toluene) phase was removed; its ¹H NMR spectrum showed the formation of Ph₃CH along with isobutene in the course of activation of **1**. The oily phase was dissolved in a mixture of toluene- d_8 and 1,2-difluorobenzene (5:1 v/v), and the NMR spectra of the resulting samples were measured. Only one species (**9**) was found to prevail in solution over a broad range of Al:Hf ratios (10-50:1). Compound **9** was stable at room temperature for hours, and complete degradation took place only on heating to +95 °C.

The ¹H NMR spectrum is shown in Figure 1. According to the ¹³C NMR spectra of **9**, Hf-*C*H₂- groups were absent. However, there are two hydride signals marked as H¹ (1H, t, ²J_{HH} = 5 Hz) and H² (2H, d, ²J_{HH} = 5 Hz), which display correlation peaks in the ¹H COSY spectra. On the basis of this information, **9** is formulated as a hydride-bridged binuclear species, [(SBI)Hf(μ -H)₂Al(H)Buⁱ]⁺[B(C₆F₅)₄]⁻ (Scheme 2).

The facile formation of hydrido-bridged species on activation of hafnocene dichlorides with AlBuⁱ₃/CPh₃[B(C₆F₅)₄] is in contrast to the reaction of related zirconocenes with AlBuⁱ₃enriched MAO, which produces predominantly methyl-bridged complexes of the type [(SBI)Zr(μ -Me)₂Al(R)Buⁱ]⁺ (R = Me, Buⁱ), whereas hydride-bridged products are only barely detectable at elevated AlBuⁱ₃/Zr ratios.^{12d} By contrast, the addion of HAlBuⁱ₂ to [(L)Zr(μ -Me)AlMe₂]⁺[Me-MAO]⁻ was found to lead to the formation of neutral zirconocene hydrides LZrH₂·n(AlR₂X).²⁵

We had found earlier that zirconocenes react with AlBuⁱ₃/ $CPh_3[B(C_6F_5)_4]$ in several steps to give eventually a hydrido species, $[(SBI)Zr(\mu-H)(\mu-C_4H_7)AlBu_2^i][B(C_6F_5)_4]$, a likely thermodynamic sink.¹³ The reactivity of **9** toward olefins was therefore tested to probe its ability to act as direct catalyst precursor. The μ -H product 9 is certainly more reactive than the μ -Me compound **5-BX**₄, and 3 equiv of propene added at -30 °C was rapidly consumed on warming to 0 °C, although the ¹H NMR spectrum of the hydride species remained essentially unchanged and the formation of a Hf-propyl species could not be detected. On the other hand, more bulky olefins, which polymerize only slowly, led to the complete disappearance of the Hf-hydride signals. For example, whereas 3 equiv of 2,4,4-trimethyl-1-pentene added to a toluene- $d_8/1,2$ -difluorobenzene solution of 9 (ca. 0.1 M) did not react at -10 °C, warming to room temperature led to the nearly complete disappearance of the peaks of 9, accompanied by a corresponding drop in the trimethylpentene concentration. The signals of 9 were replaced by those of a new C_1 -symmetric hafnocene species (revealed by nonequivalent SiMe₂ peaks in the ¹³C NMR spectrum); however, once again signals assignable to the Hf-CH₂- fragment could not be identified, and it remains uncertain whether the observed intermediate is a product of a singleinsertion reaction.

In the second experiment, ca. 3 equiv of allylbenzene was added to a 0.1 M toluene- $d_8/1$,2-difluorobenzene solution of **9** at -10 °C. After warming the sample to room temperature, **9** was found to have been consumed completely, and at least two C_1 -symmetric hafnocene species were observed in the mixture. A ¹³C NMR peak at δ 71.0 (at -10 °C) was detected, indicating possibly the formation of a Hf-CH₂ species.

Activation of Me₂C(Cp)(Flu)HfCl₂ and Ph₂C(Cp)(Flu)HfCl₂ with AlBuⁱ₃/CPh₃[B(C₆F₅)₄]. Compounds 2 and 3 react with AlBuⁱ₃/CPh₃[B(C₆F₅)₄] in a more complex way than 1. The reaction products of 2 with this activator system gave a mixture of species that were too unstable at 2–5 °C to be identified. By contrast, the reaction of 3 with AlBuⁱ₃/CPh₃[B(C₆F₅)₄] depends on the mixing temperature. Stirring the mixture (Hf:Al:B = 1:50: 1.1) at 0 °C for 10 min resulted in a new C_s-symmetric ion pair as the predominant species, which, with its simple NMR spectrum, is most likely the chloro-bridged salt [{Ph₂C(C₅H₄)-(Flu)Hf(μ -Cl)}₂]²⁺[B(C₆F₅)₄⁻]₂.²⁶ By contrast, mixing the

^{(22) (}a) Bryliakov, K. P.; Babushkin, D. E.; Talsi, E. P.; Voskoboynikov, A. Z.; Gritzo, H.; Schröder, L.; Damrau, H.-R.; Wieser, U.; Schaper, F.; Brintzinger, H. H. *Organometallics* **2005**, *24*, 894. (b) Talsi, E. P.; Bryliakov, K. P.; Semikolenova, N. V.; Zakharov, V. A.; Bochmann, M. *Kinet. Catal.* **2007**, *48*, 490.

⁽²³⁾ Nedorezova, P. M.; Veksler, E. N.; Aladyshev, A. M.; Tsvetkova, V. I.; Optov, V. A.; Brusova, G. P.; Lemenovskii, D. A. *Kinet. Catal.* **2006**, *47*, 245.

⁽²⁴⁾ Nedorezova, P. M.; Veksler, E. N.; Optov, V. A.; Tsvetkova, V. I.; Sklyaruk, B. F. *Polym. Sci. Ser. A* **2007**, *49*, 99.

⁽²⁵⁾ Babushkin, D.; Panchenko, V. N.; Timofeeva, M. N.; Zakharov, V. A.; Brintzinger, H. H. Macromol. Chem. Phys. 2008, 209, 1210.

⁽²⁶⁾ For related chloro-bridged zirconocenes $[{Cp^{R_2}Zr(\mu-Cl)}_2]^{2+}$ see ref 13 and: Wu, F.; Dash, A. K.; Jordan, R. F. J. Am. Chem. Soc. 2004, 126, 15360.

Figure 1. (a) ¹H and (b) ¹³C NMR spectra of **9** obtained by the reaction of (SBI)HfCl₂ (**1**) with AlBuⁱ₃/CPh₃[B(C₆F₅)₄] (Hf:Al:B = 1:50: 1.1; toluene- $d_8/1$,2-difluorobenzene, 20 °C).

reagents at 20 °C for 1.5 h (Hf:Al:B = 1:25–50:1.1) gave rise to a new hafnium hydride species, **10**. One of the hydrides displays a ¹H NMR peak at δ –5.56 (at +2 °C; 2H, dd, $J_{\rm HH}$ = 13 and 3.5 Hz). ¹H COSY spectra reveal that this signal shows a weak correlation with another signal at ca. δ 2.0, which overlaps with intense peaks of toluene- d_8 and AlBuⁱ₃. This species was found to be an ion pair with the [B(C₆F₅)₄]⁻ counteranion. The position of the ¹H hydride peak is characteristic of bridging rather than terminal metallocene hydrides, $^{13,14,27-31}$ however, the full structure could not be elucidated.

Reactions of $C_2H_4(Flu)(5,6-C_3H_6-2-MeInd)HfCl_2$ (4). As indicated in the Introduction, the hafnocene 4 is of interest since it produces high molecular weight elastomeric polypropylene

⁽²⁸⁾ Visser, C.; van den Hende, J. R.; Meetsma, A.; Hessen, B.; Teuben, J. H. Organometallics **2001**, *20*, 1620.

⁽²⁹⁾ Chirik, P. J.; Bercaw, J. E. Organometallics 2005, 24, 5407.

 ⁽³⁰⁾ Chung, J. H.; Lee, S. M. Bull. Korean Chem. Soc. 2006, 27, 759.
 (31) Garratt, S.; Carr, A. G.; Langstein, G.; Bochmann, M. Organometallics 2003, 36, 4276.

⁽²⁷⁾ Grossman, R. B.; Doyle, R. A.; Buchwald, S. L. Organometallics 1991, 10, 1501.

Figure 2. ¹H NMR spectrum (toluene- $d_8/1,2$ -difluorobenzene, 20 °C) of **11** obtained by the reaction of **4** with AlBuⁱ₃/CPh₃[B(C₆F₅)₄] (Hf:Al:B = 1:100:1.1). The asterisk marks the hydride peak of the minor hafnium hydrido species.

and possesses two inequivalent sites for the σ -ligands. This complex was therefore studied in more detail.

Mixing **4** with AlBuⁱ₃/CPh₃[B(C₆F₅₎₄] (Hf:Al:B = 1:40–100: 1) in toluene generates two types of hafnium hydride complexes that settle as a violet oil to the bottom of the NMR tube. As before, the upper phase was removed and the oil was dissolved in toluene-*d*₈ containing ca. 15 vol-% 1,2-difluorobenzene. Using a higher excess of AlBuⁱ₃ along with longer reaction times leads to the formation of predominantly one hydride species, **11**, identified as [L'Hf(μ -H)₂AlBuⁱ₂]⁺[B(C₆F₅)₄]⁻. A typical ¹H NMR spectrum is shown in Figure 2.

The ¹H NMR spectrum of **11** shows a hydride resonance at $\delta - 2.11$ (1H, d, H¹, J_{HH} = 6 Hz), which correlates with a second peak at δ 1.65. Apparently, due to the C₁ symmetry, two nonequivalent bridging hydrides are found at two very different chemical shifts. The Al-CH₂ peaks at δ -0.02 (2H, dd, J_{HH} = 14 and 7.2 Hz) and -0.33 (2H, dd, $J_{\rm HH} = 14$ and 7.8 Hz) correlate with a signal at δ ca. 1.6, which apparently belongs to AlCH₂CHMe₂ groups. The peaks listed above appear and degrade in parallel with the Ind-H peak at δ 5.88 and Ind-CH₃ peak at δ 1.64; thus they can be ascribed to one and the same species 11, the anionic part of which displays ¹⁹F NMR signals at δ -132.5, -163.0, and -166.5. Ion pair **11** is unstable at room temperature and slowly decomposes (within 36 h). Warming the sample to 60 °C resulted in the loss of the hafnium hydride resonances. Species 11 reacts with 3 equiv of propene on warming from -20 to +10 °C.

Like **9**, species **11** reacts with 2,4,4-trimethyl-1-pentene: after the addition of 10 equiv of the alkene to the solution of **11** in toluene- $d_8/1,2$ -difluorobenzene ([**11**] = 0.05 M), the ¹H NMR signals of **11** had disappeared after 1 h at room temperature, while the minor hydride species (marked with an asterisk in Figure 2) remained unchanged.

In order to evaluate the ligand dynamics of C_1 -symmetric systems and evaluate the energy difference between the two possible alkyl ligand binding sites, we proceeded to prepare the mixed-alkyl complex $C_2H_4(Flu)(5,6-C_3H_6-2-MeInd)-Hf(Me)CH_2SiMe_3$ and the corresponding $[L'Hf-CH_2SiMe_3]^+$ cation.

There was no significant reaction between the dichloride complex 4 and Me₃SiCH₂MgCl until the mixture was heated to 80 °C. The preferred solvent for this reaction is toluene. Under these conditions, the reaction is selective for the monoalkylation product L'Hf(Cl)CH₂SiMe₃ (12). One of the two possible isomers strongly predominates. There is evidence for the presence of a minor second isomer in the crude reaction mixture, but only the major isomer could be crystallized. The solid state structure is shown in Figure 3.

The metallocene geometry resembles that of (SBI)Hf-(Me)(CH₂SiMe₃).¹⁶ The bond lengths to the trimethylsilylmethyl ligands and the angles to the second ligands in both complexes are experimentally indistinguishable. The difference in bonding to the fluorenyl and indenyl parts of the ligand is reflected in the Hf-Ct_{Ind} and Hf-C_{Flu} distances of 2.22 and 2.30 Å, respectively. The fluorenyl also exhibits greater variation in the Hf-C bond lengths, between 2.428(8) and 2.605(8) Å, but they are all sufficiently short to designate η^5 hapticity.

The most striking feature of the molecular structure of **12** is that this major product is not the one predicted based on steric considerations: the trimethylsilylmethyl ligand is bound on the apparently more hindered side of the metallocene wedge, adopting a conformation whereby the alkyl ligand is located in close proximity to both the fluorenyl and indenyl six-membered rings. This isomer is produced with high stereoselectivity, presumably under kinetic control. A possible explanation is that in the precursor **4** the same steric interactions slightly weaken the Hf–Cl bond in that position, such that substitution of that chlorine atom is kinetically favored.³² This finding urges caution when predicting reaction outcomes based on prima facie steric considerations.

The mixed-alkyl complex L'Hf(Me)CH₂SiMe₃ (13) was prepared in a two-step, two-pot procedure from 4, but without isolating the intermediate 12. Complex 13 is very poorly soluble in light petroleum, but highly soluble in toluene. Attempts to crystallize 13 from toluene/light petroleum mixtures led only to the precipitation of a fine solid, which trapped impurities. A sample pure enough for subsequent spectroscopic studies was isolated by extracting the crude product with toluene/light petroleum, followed by removal of the solvents and washing the residue with light petroleum.

Surprisingly, while the diastereotopic Hf-CH₂ group of the chloro trimethylsilylmethyl complex gives the expected pair of doublets in the chloroform- d_1 ¹H NMR spectrum, the Hf-CH₂ signal of the methyl trimethylsilylmethyl appears as a singlet.

⁽³²⁾ Evidence that the coordination site occupied by Cl in **12** is the less hindered one is also provided by the equilibrium between cations **14a** and **14b**, where **14a** is the dominant species.

Figure 3. Left: Molecular structure of L'Hf(Cl)CH₂SiMe₃ (**12**), showing the atomic numbering scheme. Displacement ellipsoids are drawn at the 30% probability level. Hydrogen atoms have been omitted for clarity. Selected bond length (Å) and angles (deg), esd's are in parentheses: Hf(1)–C(1) 2.224(8); Hf(1)–Cl(1), 2.4143(19), Hf(1)–C(21) 2.428(8), Hf(1)–C(41) 2.473(8), Hf(1)–C(42) 2.488(9), Hf(1)–C(43) 2.511(9), Hf(1)–C(22) 2.547(7), Hf(1)–C(52) 2.547(8), Hf(1)–C(33) 2.605(8), Hf(1)–C(44) 2.623(8), Hf(1)–C(27) 2.699(7), Hf(1)–C(28) 2.737(8), Hf(1)-Ct_{Flu} 2.304, Hf(1)–Ct_{Ind} 2.22; C(1)–Hf(1)–Cl(1) 101.27(19), Ct_{Ind}–Hf(1)–Ct_{Flu} 128.4, Si(1)–C(1)–Hf(1) 122.6(4) (Ct_{Flu} = centroid of the indenyl ring). Right: View of **12** perpendicular to the Cl–Hf–C(1) plane, illustrating the steric environment of the CH₂SiMe₃ ligand.

The identity of the resonance was confirmed by HETCOR and DEPT experiments. It therefore appears that in chloroform- d_1 both Hf-C H_2 hydrogen atoms have coincidentally identical chemical shifts. In toluene- d_8 the diastereotopic Hf-C H_2 protons appear separately in the ¹H NMR spectra at temperatures up to +40 °C.

Treatment of **13** with CPh₃[B(C₆F₅)₄] in toluene affords [L'HfCH₂SiMe₃]⁺[B(C₆F₅)₄]⁻ (**14**) as a red-brown oil (Scheme 3).³³ At low temperatures (-40 to 0 °C), the ¹³C and ¹H NMR spectra show two diastereomers, **14a** and **14b**, which differ in the site of CH₂SiMe₃ coordination (Figure 4). At -20 °C, the ratio of major and minor isomers was found to be 1.6:1. In both structures, three separate ¹H NMR signals were found for the SiMe₃ groups, with the high-field resonances (at δ -1.58 for the minor isomer and δ -2.58 for the major one) indicating the γ -agostic bonding of one of the CH₃ groups.¹⁵⁻¹⁷ The position of the CH₂SiMe₃ ligand in **14a** and **14b** was determined from the ¹H, ¹H NOESY spectrum: in the major isomer, a NOE correlation peak (at 300 ms mixing time) between one of the

Hf-CH*H*-Si and the Cp-C H_3 protons was observed, thus leading to a conclusion that the structure of the major isomer corresponds to that of **14a** (Scheme 3 and Supporting Information). The most thermodynamically stable cation therefore appears to be that where the trimethylsilylmethyl ligand is located in the alternative position to the chloro trimethylsilymethyl complex **12**.

The interconversion of **14a** and **14b** leads to a broadening of the spectra with increasing temperature; coalescence is reached at +25 °C. Given the low ligand symmetry, the site epimerization is characterized by two different exchange rate constants (such that $k_a[14a] = k_b[14b]$), and the characteristic time of the overall exchange process $\tau_{ex} = (k_a + k_b)^{-1}$. This leads to estimates for $k_a = 1.1 \times 10^2 \text{ s}^{-1}$ and $k_b = 1.8 \times 10^2 \text{ s}^{-1}$ and for $\Delta G_a^{\ddagger}_{ex}$ and $\Delta G_b^{\ddagger}_{ex}$ (at the coalescence temperature of 298 K) = 14.7 and 14.4 kcal mol⁻¹, respectively.³⁴ These values are close to that observed for the [(SBI)Hf(CH₂-SiMe₃)]⁺[B(C₆F₅)₄]⁻ ion pair.¹⁶

⁽³³⁾ For the related activation of mixed-alkyl Zr and Hf complexes with $B(C_6F_5)_3$ see: Beswick, C. L.; Marks, T. J. J. Am. Chem. Soc. **2000**, 122, 10358. For the reaction of [(SBI)ZrCH₂SiMe₃][B(C₆F₅)₄] with 1-hexene see: Landis, C. R.; Christianson, M. D. Proc. Natl. Acad. Sci. **2006**, 103, 15349.

⁽³⁴⁾ To estimate the exchange rate constants, the Cp- $H^{1}H$ NMR peaks were considered, assuming the $\Delta \omega_0 = 290$ Hz (at-40 °C) and coalescence temperature +25 °C. At temperatures lower than-40 °C, the ¹H NMR peaks of **7a** and **7b** become too broad due to the increased viscosity of the toluene/ diffuorobenzene solvent.

Figure 4. ¹H NMR spectrum (toluene- $d_8/1,2$ -difluorobenzene) of the cationic hafnium species obtained by the reaction of **14** with CPh₃[B(C₆F₅)₄] (Hf:B = 1:1.1) at differing temperatures. Asterisks mark the Hf-CHH-Si peaks of both major (**14a**) and minor (**14b**) isomers.

Of particular interest is the question of the relation between the chain propagation rate and the observed site epimerization rate. For the system $4/\text{AlBu}^i_3/\text{CPh}_3[\text{B}(\text{C}_6\text{F}_5)_4]$, Rieger and coworkers reported an increase in isotacticity of propene polymerization with temperature ([mmmm] fraction rising from 17 to 34% upon increasing the polymerization temperature from 0 to 50 °C) and explained this by a favored back-skip of the growing polymer chain before monomer coordination.¹⁻³ One should expect then that the back-skip and chain propagation processes should have comparable rates. The observed site epimerization in 14 can be regarded as a model of this backskip process, providing the kinetic parameters of this exchange. From the reported polymerization data of Rieger under pseudofirst-order conditions one can derive the propagation rate constants k_p^{obs} (estimated from the polymer yield) of 150 s⁻¹ at 20 °C and 330 s⁻¹ at 50 °C. These values are very comparable to the site epimerization rates observed here for **14** and thus support the conclusion that the back-skip and chain propagation processes proceed with comparable rates.^{35,36}

Conclusions

The interaction of hafnocenes 1-3 with MAO, AlMe₃/ $CPh_3[B(C_6F_5)_4]$, and $AlBu_3^i/CPh_3[B(C_6F_5)_4]$ lead to different types of cationic intermediates with different reactivities. The methyl-bridged heterobinuclear intermediates $[LHf(\mu-Me)_2Al(\mu-Me$ Me)₂][MeMAO] and [LHf(μ -Me)₂Al(μ -Me)₂][B(C₆F₅)₄] are thermally stable at room temperature but display only low olefin polymerization productivities; that is, they polymerize propene only on warming to room temperature. The stability of these μ -Me products is thought to be responsible for the comparatively low catalytic activity of hafnocenes when AlMe₃ is present (i.e., with AlMe₃-rich MAO). Activation with AlBuⁱ₃/CPh₃[B(C₆F₅)₄], on the other hand, generates heterobinuclear hydrido-bridged species of the type $[LHf(\mu-H)_2AlBu^i_2]^+$ or $[LHf(\mu-H)_2Al (H)Bu^{1}$, which are much more reactive in olefin polymerizations. The hafnium hydride species were completely consumed in reactions with a few equivalents of 2,4,4-trimethyl-1-pentene and allylbenzene, thus confirming their role as the active site precursors.

Similar reactions were found for the C_1 -symmetric hafnocene 4. The two chloride ligands show surprisingly different reactivity, as shown by the stereoselective synthesis of L'Hf-(Cl)CH₂SiMe₃. The ion pair $[C_2H_4(Flu)(5,6-C_3H_6-2-MeInd)HfCH_2SiMe_3]^+[B(C_6F_5)_4]^-$ produced on trityl borate activation exists as a mixture of two diastereomers, which are in equilibrium. The site epimerization rates indicate that the two possible alkyl ligand coordination sites are of very comparable energy; these rates are also of the same order of magnitude as propagation rates for propene polymerizations with this system.

Experimental Section

Methylaluminoxane (MAO) was purchased from Crompton GmbH (Germany) as a toluene solution (total Al content 1.8 M, Al as AlMe₃ 0.5 M). Ethylene-¹³C₂ (99% ¹³C) was purchased from Aldrich. Triisobutylaluminum (AlBuⁱ₃) was purchased from Aldrich and either diluted to obtain a solution of [Al] = 1 M or used as received for experiments with high Al/Hf ratios. Trimethylaluminum (AlMe₃) was purchased from Aldrich as a 2 M solution in toluene. Toluene was purified by refluxing over sodium metal and distilled under dry nitrogen. 1,2-Difluorobenzene was dried over molecular sieves (4 Å) and degassed. All operations were carried out under dry nitrogen (99.999%) by standard Schlenk techniques. Solids and toluene were transferred and stored in a glovebox. (SBI)HfCl₂ (1),³⁷ Me₂C(Cp)(Flu)HfCl₂ (2),³⁸ Ph₂C(Cp)(Flu)HfCl₂ (3),³⁹ and CPh₃- $[B(C_6F_5)_4]^{40}$ were prepared according to literature procedures. Complex C₂H₄(Flu)(5,6-C₃H₆-2-MeInd)HfCl₂ (4) was kindly donated by Prof. B. Rieger.

¹H, ¹³C{¹H}, and ¹⁹F NMR spectra were recorded in standard 5 mm NMR tubes on either Bruker Avance DPX-300 or Avance 400 spectrometers. Typical operating conditions for ¹³C NMR measure-

⁽³⁵⁾ One should be aware, however, that k_p^{obs} estimated from the polymer yield might be ca. 1 order of magnitude lower than that determined from the time dependence of the number-average molecular weight at the initial stages of polymerization.^{15,36}

 ^{(36) (}a) Song, F.; Cannon, R. D.; Bochmann, M. J. Am. Chem. Soc.
 2003, 125, 7641. (b) Song, F.; Cannon, R. D.; Lancaster, S. J.; Bochmann, M. J. Mol. Catal. 2004, 218, 21.

⁽³⁷⁾ Herrmann, W. A.; Rohrmann, J.; Herdtweck, E.; Spaleck, W.; Winter, A. Angew. Chem., Int. Ed. Engl. **1989**, 28, 1511.

⁽³⁸⁾ Ewen, J. A.; Jones, R. L.; Razavi, A.; Ferrara, J. D. J. Am. Chem. Soc. 1988, 110, 6255.

⁽³⁹⁾ Mise, T.; Miya, S.; Yamazaki, H. Chem. Lett. 1989, 1853.

⁽⁴⁰⁾ Bochmann, M.; Lancaster, S. J. J. Organomet. Chem. 1992, 434, C1.

ments were the following: spectral width 20 kHz; spectrum accumulation frequency 0.1 Hz; 100–5000 transients, 90° pulse at 6.7 μ s. Correct integral values were obtained from inverse gated spectra. ¹³C, ¹H correlations were established by using the standard Bruker HXCOBI (for direct C–H interactions) pulse program. Operating conditions for ¹H NMR measurements: spectral width 5 kHz; spectrum accumulation frequency 0.2–0.5 Hz; number of transients 32–64, ca. 30° pulse at 2 μ s. Typical operating conditions for ¹⁹F NMR measurements: spectral width 30 kHz; spectrum accumulation frequency 0.1–0.5 Hz; number of transients 32–64. For calculations of ¹H and ¹³C chemical shifts, the resonance of the CH₃ group of toluene solvent was taken as δ 2.09 and 20.40, respectively. ¹⁹F chemical shifts were referenced externally to CFCl₃. Sample temperature measurement uncertainty and temperature reproducibility were less than ±1 °C.

Preparation of MAO and Al₂Me₆ Samples. Solid MAO was prepared from commercial MAO (Crompton) by removal of the solvent under vacuum at 20 °C. The solid product obtained (polymeric MAO with total Al content 40 wt % and Al as residual AlMe₃ ca. 5 wt %) was used for the preparation of the samples. ¹³CH₃-enriched MAO was prepared by ligand exchange of 99% ¹³CH₃-enriched Al₂Me₆ (70 mol % of total Me groups) and solid MAO (30 mol % of total Me groups) in toluene solution followed by subsequent removal of the liquid fraction of Al₂Me₆ under vacuum to give a sample of ¹³C-enriched MAO (65–70% ¹³C) with desired Al₂Me₆ content (polymeric MAO with total Al content of 40% and Al as residual AlMe₃ ca. 5 wt %). A more detailed description is presented in ref 41.

Preparation of NMR Samples. The appropriate amounts of hafnium complex (typically, 0.01-0.06 mmol) and MAO or CPh₃[B(C₆F₅)₄] were placed in 5 mm NMR tubes in a glovebox and capped with rubber septa. Further addition of AlMe₃ solution (if necessary, Al/Hf = 30-50) to the tube with the hafnium complex was performed outside the glovebox with gastight microsyringes. For hafnocenes/MAO samples, the spectra were recorded in toluene.

For hafnocenes/AlMe₃/CPh₃[B(C₆F₅)₄] systems, the resulting cationic species were poorly soluble in toluene but formed oily precipitates in the lower part of the NMR tube. Normally, after shaking the samples at room temperature, they were allowed to stand to achieve the phase separation, then the upper (toluene) phase was removed and the oily residue was dissolved in 0.5 mL of toluene- d_8 and 0.1 mL of 1,2-difluorobenzene to obtain a homogeneous solution.

For hafnocenes/AlBuⁱ₃/CPh₃[B(C₆F₅₎₄] systems, in a glovebox the appropriate amounts of hafnium complex (typically, 0.03-0.06 mmol) and CPh₃[B(C₆F₅₎₄] were placed in a Schlenk tube equipped with a magnetic stirrer and capped with a rubber septum. Further addition of AlBuⁱ₃ solution was performed outside the glovebox with gastight microsyringes at 0 °C, and the mixture was then stirred at room temperature (typically 1–2 h). The oily phase was allowed to settle and the upper toluene phase was decanted. This removed most (but not all) of the excess AlBuⁱ₃. The oil was dissolved in toluene-*d*₈ and 1,2-difluorobenzene (5:1 v/v), and the resulting samples were taken for the NMR measurements.

Propene and ethene (13 C-ethene) were injected in the NMR tubes via gastight syringes upon appropriate cooling (below -30 °C).

Typical NMR Data for the $[B(C_6F_5)_4]^-$ **Counteranion.** ¹³C{¹H} NMR (75.47 MHz, toluene- d_8 , 1,2-difluorobenzene, 20 °C): δ 148.9 (8C, *o*-C, $J^1_{CF} = 246$ Hz), 138.7 (d, 4C, *p*-C, $J^1_{CF} = 246$ Hz), 136.9 (d, 8C, *m*-C, $J^1_{CF} = 245$ Hz). ¹⁹F NMR (282.40 MHz, toluene- d_8 , 1,2-difluorobenzene, 20 °C): δ –132.5 (2F, *o*-F), –163.0 (t, 1F, *p*-F, ³ $J_{FF} = 19$ Hz), –166.5 (2F, *m*-F).

(**SBI**)**HfMeCl.** ¹H NMR (300.13 MHz, toluene- $d_8/1$,2-difluorobenzene, 20 °C, Al_{MAO}/Hf = 30): δ 6.62 (d, 1H, Cp-*H*, J_{HH} = 3.0 Hz), 6.49 (d, 1H, Cp-*H*, ${}^{3}J_{\rm HH} = 3.0$ Hz), 5.94 (d, 1H, Cp-*H*, $J_{\rm HH} = 3.0$ Hz), 5.42 (d, 1H, Cp-*H*, $J_{\rm HH} = 3.0$ Hz), 0.64 (s, 3H, SiMe), 0.54 (s, 3H, SiMe), -0.82 (s, 3H, HfMe). ${}^{13}C{}^{1}H$ NMR (75.47 MHz, toluene- $d_{8}/1,2$ -difluorobenzene, 20 °C, Al/Hf = 30, ${}^{13}C$ -enriched MAO used): δ 41.2 (1C, Hf-Me, $J_{\rm CH}^{1} = 124$ Hz).

[(SBI)Hf(μ-Me)₂AlMe₂][MeMAO] (5-MAO). ¹H NMR (300.13 MHz, toluene- $d_8/1$,2-difluorobenzene, 20 °C, Al/Hf = 240): δ 6.17 (2H, Cp-*H*), 5.05 (2H, Cp-*H*), 0.80 (s, 6H, SiMe₂), -0.60 (s, 6H, AlMe₂), -0.90 (s, 3H, Hf(μ-Me)₂Al). ¹³C{¹H} NMR (75.47 MHz, toluene- $d_8/1$,2-difluorobenzene, 20 °C, Al/Hf = 240, ¹³C-enriched MAO used): δ 35.7 (2C, Hf(μ-Me)₂Al, J_{1CH}^{1} = 113 Hz).

[(SBI)Hf(μ-Me)₂AlMe₂][B(C₆F₅)₄] (5-BX₄). ¹H NMR (300.13 MHz, toluene-d_8/1,2-difluorobenzene, 20 °C): δ 6.10 (d, 2H, Cp-H, J_{\rm HH} = 3.2 Hz), 5.00 (d, 2H, Cp-H, J_{\rm HH} = 3.2 Hz), 0.75 (s, 6H, SiMe₂), -0.70 (s, 6H, AlMe₂), -0.93 (s, 6H, Hf(\mu-Me)₂Al); 2.00 (s, 3H, Ph₃CCH₃). ¹³C NMR (75.47 MHz, toluene-d_8/1,2-difluorobenzene, 20 °C): δ 115.8 (2C, Cp, J^1_{\rm CH} = 179 Hz), 113.9 (2C, Cp, J^1_{\rm CH} = 179 Hz), 86.4 (2C, Si-C(Cp)), 35.2 (2C, Hf(\mu-Me)₂Al, J^1_{\rm CH} = 113 Hz), -3.2 (2C, SiMe₂, J^1_{\rm CH} = 122 Hz), -7.2 (2C, AlMe₂, J^1_{\rm CH} = 115 Hz).

Me₂C(Cp)(Flu)HfMeCl. ¹H NMR (400.13 MHz, toluene- $d_8/$ 1,2-difluorobenzene, 20 °C, Al/Hf = 90): δ 6.10 (1H, Cp-*H*), 5.75 (1H, Cp-*H*), 5.45 (1H, Cp-*H*), 4.95 (1H, Cp-*H*), 1.85 (s, 3H, CMe), 1.77 (s, 3H, CMe), -1.06 (s, 3H, HfMe).

[Me₂C(Cp)(Flu)Hf(μ -Me₂)₂AlMe₂][MeMAO] (6-MAO). ¹H NMR (400.13 MHz, toluene- d_8 , 20 °C, Al/Hf = 300): δ 5.68 (2H, Cp-H), 4.76 (2H, Cp-H), 1.98 (s, 6H, C(CH₃)₂). AlMe₂ and Hf(μ -Me)₂Al peaks not observed (hidden by broad and intense MAO signal).

[Me₂C(Cp)(Flu)Hf(μ -Me)₂AlMe₂][B(C₆F₅)₄] (6-BX₄). ¹H NMR (400.13 MHz, toluene- $d_8/1$,2-difluorobenzene, 20 °C): δ 5.63 (2H, Cp-*H*), 4.74 (2H, Cp-*H*), 1.90 (s, 6H, CMe₂), -0.72 (s, 3H, AlMe), -0.81 (s, 3H, AlMe), -1.11 (s, 6H, Hf(μ -Me)₂Al). ¹³C NMR (100.614 MHz, toluene- $d_8/1$,2-difluorobenzene, 20 °C): δ 118.0 (2C, Cp), 102.2 (2C, Cp), 28.1 (2C, Hf(μ -Me)₂Al), 27.7 (2C, CMe₂), -6.5 (2C, AlMe), -9.0 (2C, AlMe).

Ph₂C(Cp)(Flu)HfMeCl. ¹H NMR (400.13 MHz, toluene- d_8 , 20 °C, Al_{MAO}/Hf = 90): δ 6.50 (1H, Cp-*H*), 6.30 (1H, Cp-*H*), 5.90 (1H, Cp-*H*), 5.45 (1H, Cp-*H*), -1.08 (s, 3H, HfMe).

[Ph₂C(Cp)(Flu)Hf(μ -Me)₂AlMe₂][MeMAO] (7-MAO). ¹H NMR (400.13 MHz, toluene- d_8 , 20 °C, Al/Hf = 300): δ 6.15 (2H, Cp-H), 5.15 (2H, Cp-H), -1.05 (6H, Hf(μ -Me)₂Al).

[Ph₂C(Cp)(Flu)Hf(μ -Me)₂AlMe₂][B(C₆F₅)₄] (7-BX₄). ¹H NMR (400.13 MHz, toluene- $d_8/1$,2-difluorobenzene, 20 °C): δ 6.05 (2H, Cp-*H*), 5.12 (2H, Cp-*H*), -0.64 (s, 3H, Al(CH₃)), -0.79 (s, 3H, AlMe), -1.09 (s, 6H, Hf(μ -Me)₂Al). ¹³C NMR (100.614 MHz, toluene- $d_8/1$,2-difluorobenzene, 20 °C): δ 123.1 (2C, Cp), 111.4 (2C, Cp), 99.0 (C, C(Cp)), 63.3 (1C, CPh₂), 30.6 (2C, Hf(μ -Me)₂Al), -6.3 (2C, AlMe), -9.1 (2C, AlMe).

[C₂H₄(Flu)(5,6-C₃H₆-2-MeInd)Hf(μ-Me)₂AlMe₂][MeMAO] (8-MAO). ¹H NMR (300.13 MHz, toluene- d_8 , 20 °C, Al/Hf = 90): δ 5.41 (s, 1H, Cp-H), 1.79 (s, 3H, Cp-CH₃), -0.6 (s, 3H), -0.75 (s, 3H, AlMe), -1.94 (s, 3H, Hf(μ-Me)₂Al). ¹³C NMR (75.47 MHz, toluene- $d_8/1$,2-difluorobenzene, 20 °C, ¹³C-enriched MAO was used): δ 103.5 (1C, Cp), 103.2 (1C, Cp-H, $J^1_{CH} = 178$ Hz), 36.7 (1C, Hf(μ-Me)₂Al, $J^1_{CH} = 112$ Hz), 36.3 (1C, Hf(μ-Me)₂Al, $J^1_{CH} = 112$ Hz), 14.2 (1C, Cp-CH₃, $J^1_{CH} = 130$ Hz), -6.1 (1C, AlMe, $J^1_{CH} = 113$ Hz), -7.8 (1C, AlMe, $J^1_{CH} = 113$ Hz).

[C₂H₄(Flu)(5,6-C₃H₆-2-MeInd)Hf(μ -Me)₂AlMe₂]⁺[B(C₆F₅)₄]⁻ (8-BX₄). ¹H NMR (300.13 MHz, toluene- $d_8/1$,2-difluorobenzene, 20 °C): δ 5.38 (s, 1H, Cp-*H*), 1.71 (s, 3H, Cp-C*H*₃), -0.69 (s, 3H, AlMe), -0.74 (s, 3H, Hf(μ -Me)₂Al), -0.82 (s, 3H, AlMe), -1.88 (s, 3H, Hf(μ -Me)₂Al); 2.00 (s, 3H, Ph₃CC*H*₃). ¹³C NMR (75.47 MHz, toluene- $d_8/1$,2-difluorobenzene, 10 °C): δ 103.5 (1C, Cp), 103.2 (1C, Cp-*H*, J_{CH}^1 = 178 Hz), 36.2 (1C, Hf(μ -Me)₂Al, J_{CH}^1 = 112 Hz), 36.1 (1C, Hf(μ -Me)₂Al, J_{CH}^1 = 112 Hz), 14.2 (1C, Cp-

⁽⁴¹⁾ Bryliakov, K. P.; Talsi, E. P.; Bochmann, M. Organometallics 2004, 23, 149.

 CH_3 , $J^1_{CH} = 130$ Hz), -6.1 (1C, AlMe), $J^1_{CH} = 113$ Hz), -7.8 (1C, AlMe, $J^1_{CH} = 113$ Hz).

(SBI)Hf(Buⁱ)Cl. ¹H NMR (300.13 MHz, toluene- d_8 , 20 °C, Al/ Hf = 90): δ 5.88 (d, 1H, Cp-H, J_{HH} = 3.0 Hz), 5.36 (s, 1H, Cp-H, J_{HH} = 3.0 Hz), 0.62 (s, 3H, SiMe), 0.51 (s, 3H, SiMe), -0.72 (dd, 1H, Hf- CH_2), J_{HH} = 14 Hz, J_{HH} = 7 Hz), -1.11 (dd, 1H, Hf- CH_2 , J_{HH} = 14 Hz, J_{HH} = 5 Hz). Isobutene: δ 4.65 (s, 2H, CH_2), 1.59 (s, 6H, Me). ¹³C NMR (75.47 MHz, toluene- d_8 , 1,2-difluorobenzene, 20 °C): δ 80.4 (1C, Hf- CH_2 , J_{CH}^1 = 113 Hz), -1.8 (1C, SiMe), -2.4 (1C, SiMe).

[(**SBI**)**H**f(*μ*-**H**)₂**A**l(**H**)(**Bu**ⁱ)]⁺[**B**(C₆**F**₅)₄]⁻ (9). ¹H NMR (300.13 MHz, toluene-*d*₈, 20 °C, Al/Hf = 90): δ 6.38 (d, 2H, Cp-*H*, ²*J*_{HH} = 2.8 Hz), 5.64 (s, 2H, Cp-*H*, *J*_{HH} = 2.8 Hz), 1.40 (t, 1H, hydride, *J*_{HH} = 5), 0.75 (s, 6H, SiMe), -1.13 (d, 2H, hydride, *J*_{HH} = 5 Hz). Isobutene: δ 4.69 (s, 2H, C*H*₂), 1.60 (s, 6H, Me). ¹³C NMR (75.47 MHz, toluene-*d*₈, 1,2-difluorobenzene, 20 °C): δ 113.4 (2C, *C*-H (Cp), *J*¹_{CH} = 172 Hz), 103.1 (2C, *C*-H (Cp), *J*¹_{CH} = 179 Hz), 87.9 (2C, *C* (Cp)), -3.2 (2C, SiMe₂).

[{**Ph**₂**C**(**C**₅**H**₄)(**Flu**)**H**f(μ -**Cl**)]₂]²⁺ • **2**[**B**(**C**₆**F**₅)₄]⁻. ¹H NMR (400.13 MHz, toluene- $d_8/1$,2-difluorobenzene, 20 °C): δ 6.16 (4H, Cp-H), 5.08 (4H, Cp-H). ¹³C NMR (100.614 MHz, toluene- $d_8/1$,2-difluorobenzene, 20 °C): δ 126.6 (4C, C-H, (Cp)), 112.0 (4C, C-H, (Cp)), 100.5 (2C, C(Cp)), 63.3 (2C, CPh₂).

Activation of Ph₂C(Cp)(Flu)HfCl₂ with AlBuⁱ₃/CPh₃[B(C₆F₅)₄] (Hf:Al:B = 1:25–50:1.1): Species 10. ¹H NMR (400.13 MHz, toluene- d_8 /1,2-difluorobenzene, 20 °C): δ 6.22 (1H, Cp-H, $J_{HH} =$ 2 Hz), 5.37 (1H, Cp-H, $J_{HH} =$ 2 Hz), 5.08 (1H, Cp-H, $J_{HH} =$ 2 Hz), 2.0, -5.56 (1H, $J_{HH} =$ 13 Hz, $J_{HH} =$ 3.5 Hz). ¹³C NMR (100.614 MHz, toluene- d_8 /1,2-difluorobenzene, 20 °C): δ 123.0 (1C, quaternary C), 118.6 (1C, C–H, (Cp)), 113.6 (1C, C–H, (Cp)), 112.2 (1C, Cp), 97.6 (1C, C(Cp)), 59.9 (1C, CPh₂).

[C₂H₄(Flu)(5,6-C₃H₆-2-MeInd)Hf(μ -H)₂AlBuⁱ₂]⁺[B(C₆F₅)₄]⁻ (11). ¹H NMR (300.13 MHz, toluene- d_8 , 20 °C, Al/Hf = 90): δ 5.88 (s, 1H, Cp-*H*), 1.64 (s, 1H, Cp-CH₃), -0.02 (2H, dd, Al(CH*H*)₂, $J_{\text{HH}} = 14$ Hz, $J_{\text{HH}} = 7.2$ Hz) and -0.33 (2H, dd, Al(CH*H*)₂, $J_{\text{HH}} = 14$ Hz, $J_{\text{HH}} = 7.8$ Hz), -2.11 (1H, d, H¹, $J_{\text{HH}} =$ 6 Hz). δ -4.00 (1H, dd, H², $J_{\text{HH}} = 10$ Hz, $J_{\text{HH}} = 3.7$ Hz). Isobutene: δ 4.69 (s, 2H, CH₂), 1.60 (s, 6H, Me). ¹³C NMR (75.47 MHz, toluene- d_8 , 1,2-difluorobenzene, 20 °C): δ 107.4 (1C, C-H (Cp)), 32.4 (2C, Al(CH₂)₂, $J^1_{\text{CH}} = 139$ Hz), 14.5 (1C, Cp-CH₃, $J^1_{\text{CH}} =$ 129 Hz).

C2H4(Flu)(5,6-C3H6-2-MeInd)Hf(Cl)CH2SiMe3 (12). C2H4(2-Me-5,6-(C₃H₆)Ind)HfCl₂ (0.75 g, 1.23 mmol) was suspended in 25 mL of toluene at room temperature. Me₃SiCH₂MgCl (6.6 mmol, 6.2 mL, 1.06 M in diethyl ether) was added to the suspension and the reaction mixture warmed to 80 °C for 26 h. The solvents were removed under vacuum. The product was extracted with a solvent mixture comprising 10 mL of toluene and 10 mL of light petroleum. Cooling the resulting solution to -25 °C for one week yielded small yellow crystals suitable for X-ray crystallography (0.4 g, 0.61 mmol, 50%). Anal. Calcd for C₃₂H₃₅ClHfSi: C, 58.09; H, 5.33. Found: C, 58.49; H, 4.83. ¹H NMR (300.13 MHz, CDCl₃, 25 °C): δ 7.89–7.79 (m, 3H, Ar), 7.49 (br, 2H, Ar), 7.34-7.25 (m, 3H, Ar), 7.16 (br, 1H, Ar), 7.00-6.95 (m, 1H, Ar), 5.73 (s, 1H, Cp-H), 4.28-4.16 (m, 1H, Al), 4.06-3.89 (m, 2H, Al), 3.76-3.67 (m, 1H, Al), 2.99-2.80 (m, 4H, Al), 2.25 (s, 3H, Cp-CH₃), 2.06-1.96 (m, 2H, Al), -0.33 (s, 9H, SiMe₃), -2.80 (d, 1H, $^{2}J = 12.4$ Hz, Hf-CHH), -2.95 (d, 1H, ²J = 12.4 Hz, Hf-CHH). ¹³C NMR (75.47 MHz, CDCl₃, 25 °C): δ 143.81, 141.76, 127.76, 127.68, 127.35, 126.98, 126.67, 126.56, 124.05, 123.76, 123.35, 122.85, 122.34, 122.05, 121.30, 120.83, 119.02, 116.80, 114.49, 104.01 ('Cp'), 96.89, 57.76 (Hf-CH₂), 32.31, 32.26, 28.42, 26.96, 26.44, 14.89 (Cp-CH₃), 2.01 (SiMe₃).

 $C_2H_4(Flu)(5,6-C_3H_6-2-MeInd)Hf(Me)CH_2SiMe_3$ (13). To a suspension $C_2H_4(Flu)(5,6-C_3H_6-2-MeInd)HfCl_2$ (1.51 g, 2.48 mmol) in 25 mL of toluene was added Me₃SiCH₂MgCl (5.3 mmol, 5.0 mL, 1.06 M in diethyl ether) at room temperature. The reaction

mixture was heated to 80 °C for 12 h, during which time the suspended dichloride complex dissolved. The volatiles were removed under vacuum and the magnesium salts separated by extraction with a mixture of 20 mL of light petroleum and 20 mL of toluene. The resulting yellow solution was concentrated to approximately 20 mL under reduced pressure to remove the light petroleum. To this solution was added MeMgCl (2.5 mmol, 0.83 mL, 3 M in tetrahydrofuran) at room temperature and the reaction mixture stirred for 16 h. Removal of the volatiles gave a yellow oil, which solidified on addition of 20 mL of light petroleum. The addition of a further 20 mL of toluene was necessary to dissolve the product, and the insoluble residues were separated by filtration. The crude product crystallized from a yellow oil only after complete distillation of the solvent and was washed with 20 mL of light petroleum (0.9 g, 1.41 mmol, 57%). In order to prevent further losses, the compound was not recrystallized, and no elemental analysis was obtained. ¹H NMR (300.13 MHz, toluene-*d*₈, 20 °C): δ 7.79 (dt, $J_{\text{HH}} = 8$ Hz, $J_{\text{HH}} = 1$ Hz, Ar), 7.75 (dt, $J_{\text{HH}} = 8$ Hz, J_{HH} = 1 Hz, Ar), 7.35–6.9 (overlapped with toluene), 6.77 (dd, $J_{\rm HH}$ = 8.7 Hz, $J_{\text{HH}} = 1$ Hz, Ar), 6.75 (dd, $J_{\text{HH}} = 8.7$ Hz, $J_{\text{HH}} = 1$ Hz, Ar), 5.84 (s, 1H, Cp-H), 3.77-3.26 (m), 2.93-2.62 (m), 1.92 (s, 3H, Cp-CH₃), -0.05 (s, 9H, SiMe₃), -1.24 (s, 3H, Hf-Me), -3.03 (m, 2H, diastereotopic Hf-CH₂). ¹³C NMR (75.47 MHz, toluene-d₈, 20 °C): δ 142.2, 140.8, 127.2, 124.1, 122.7, 122.5, 121.9, 119.3, 116.5, 103.4 (1C, C-H (Cp)), 95.6, 58.4 (1C, $J_{CH} = 106$ Hz, Hf-CH₂), 45.5 (1C, $J_{CH} = 115$ Hz, Hf-Me), 32.6, 32.5, 27.7, 26.9, 26.4, 25.2, 14.4 (1C, $J_{CH}^1 = 127$ Hz, Cp-CH₃), 2.9 (3C, $J_{CH}^1 = 116$ Hz, SiMe₃).

 $[C_2H_4(Flu)(5,6-C_3H_6-2-MeInd)HfCH_2SiMe_3]^+[B(C_6F_5)_4]^-$ (14). In a glovebox, the appropriate amounts of $C_2H_4(2-Me-5,6-(C_3H_6)Ind)Hf(Me)CH_2SiMe_3$ (typically, 0.01–0.06 mmol) and CPh₃[B(C₆F₅)₃] (1.1 equiv) were placed in a 5 mm NMR tube capped with a rubber septum. Toluene- d_8 (0.5 mL) was added with appropriate cooling (<0 °C). After mixing the sample, the latter was allowed to stand until the phases had separated. The upper (organic) phase was removed; the oily phase was washed with 0.3 mL of toluene- d_8 and dissolved in 0.3 mL of toluene- d_8 and 0.1 mL of 1,2-difluorobenzene. A trace of SiMe₄ due to hydrolysis was observed. Since the compound is an equilibrium mixture of two diastereomers, the spectra are sensitive to the measurement temperature, so the NMR data are presented for -20 °C (slow exchange) and +25 °C (fast exchange).

¹H NMR (300.13 MHz, toluene-*d*₈/1,2-difluorobenzene, -20 °C). Major isomer **14a**: δ 5.41 (s, 1H, Cp-*H*), 1.92 (d, 1H, ²*J*_{HH} = 12.5 Hz, Hf-CH*H*-Si), 1.63 (s, 3H, Cp-C*H*₃), 0.01 (s, 3H, SiMe), -0.18 (s, 3H, SiMe), -0.26 (d, 1H, ²*J*_{HH} = 12.5 Hz, Hf-C*H*H-Si), -2.58 (s, 3H, Hf-Me-Si). Minor isomer **14b**: δ 4.46 (s, 1H, Cp-*H*), 1.72 (s, 3H, Cp-C*H*₃), 0.16 (d, 1H, ²*J*_{HH} = 12.5 Hz, Hf-C*H*H-Si), -0.04 (s, 3H, SiMe), -0.14 (s, 3H, SiMe), -0.14 (s, 3H, SiMe), -0.73 (d, 1H, ²*J*_{HH} = 12.5 Hz, Hf-C*H*H-Si), -1.58 (s, 3H, Hf-C*H*₃-Si). ¹³C NMR (75.47 MHz, toluene-*d*₈/1,2-difluorobenzene, -20 °C). Major isomer **14a**: δ 103.4 (1C, *Cp*-H), 102.9 (1C, Cp), 66.3 (1C, Hf-*CH*₂-Si), 19.0 (1C, SiMe-Hf), 16.6 (1C, Cp-*C*H₃), -0.1 (1C, SiMe), -3.0 (1C, SiMe). Minor isomer **14b**: δ 102.0 (1C, *Cp*), 101.1 (1C, *Cp*-H), 16.5 (1C, Si-Me-Hf), 13.7 (1C, Cp-*C*H₃), 0.5 (1C, SiMe), -2.5 (1C, SiMe).

¹H NMR (300.13 MHz, toluene-*d*₈/1,2-difluorobenzene, +25 °C): δ 5.25 (s, br, 1H, Cp-*H*), 1.77 (s, 3H, Cp-C*H*₃), -0.11 (d, 1H, ²*J*_{HH} = 12.5 Hz, Hf-C*H*H-Si), -0.71 (s, br, 9H, SiMe₃). One of the Hf-CH*H*-Si peaks not found (overlaps with other peaks). ¹³C NMR (75.47 MHz, toluene-*d*₈/1,2-difluorobenzene, +25 °C): δ 103.9 (2C, *Cp*-H and Cp), 72.7 (1C, *CH*₂), 68.9 (1C, *CH*₂), 32.6, 32.4, 29.2, 27.9, 26.4, 25.5, 14.5 (1C, SiMe₃).

X-ray Crystallography. Crystals of compound **12** are yellow plates. From a sample under oil, one, ca. $0.07 \times 0.04 \times 0.015$ mm, was mounted on a glass fiber and fixed in the cold nitrogen stream on a Bruker-Nonius diffractometer equipped with a FR591 rotating anode Mo K α radiation source (λ (Mo K α) = 0.71073 Å)

and graphite monochromator. Intensity data were measured by thinslice ω - and ϕ -scans with a Bruker-Nonius Roper CCD camera on a κ -goniostat. Total number of reflections recorded, to $\theta_{\text{max}} = 25.0^{\circ}$, was 21 382, of which 4852 were unique ($R_{\text{int}} = 0.088$); 3784 were observed with $I > 2\sigma_I$.

Data were processed using the HKL software.⁴² The structure was determined by the direct methods routines in the SHELXS program⁴³ and refined by full-matrix least-squares methods, on F^{2*} s, in SHELXL.⁴³ The non-hydrogen atoms were refined with anisotropic thermal parameters. Hydrogen atoms were included in idealized positions, and their U_{iso} values were set to ride on the U_{eq} values of the parent carbon atoms. At the conclusion of the refinement, $wR_2 = 0.104$ and $R_1 = 0.084$ (2B) for all 4852 reflections weighted $w = 1/[\sigma^2(F_o^2) + 22.94P]$ where $P = (F_o^2 + 2F_c^2)/3$; for the observed data only, $R_1 = 0.054$. In the final difference map, the highest peak (ca. 1.27 e Å⁻³) was 0.96 Å from Hf(1).

Scattering factors for neutral atoms were taken from the literature.⁴⁴ Computer programs used in this analysis have been noted above and were run through WinGX⁴⁵ on a Dell Optiplex 745 PC at the University of East Anglia.

Crystal data: C₃₂H₃₅ClHfSi, M = 661.6, monoclinic, space group $P2_1/c$, a = 17.2434(6) Å, b = 10.0370(3) Å, c = 17.8692(5)Å, $\beta = 116.194(2)^\circ$, V = 2775.06(15) Å³, Z = 4, $D_{calc} = 1.584$ g cm⁻³, F(000) = 1320, T = 120(2) K, μ (Mo K α) = 3.917 mm⁻¹.

Acknowledgment. We thank the Royal Society (grant 2006/R4 IJP) and RFBR (grant 06-03-32700) for the financial support of this work. We are grateful to Prof. Dr. Bernhard Rieger, TU Munich, for providing a sample of $C_2H_4(Flu)(5,6-C_3H_6-2-MeInd)HfCl_2$, to Dr. Louise Male (National X-ray Crystallography Service) for diffraction data collection on $C_2H_4(Flu)(5,6-C_3H_6-2-MeInd)Hf(Cl)CH_2SiMe_3$, and to Dr. David L. Hughes (UEA) for assistance with the crystallographic analysis.

Supporting Information Available: NMR spectra of the intermediates; crystal and refinement data for $C_2H_4(Flu)(5,6-C_3H_6-2-MeInd)Hf(Cl)CH_2SiMe_3$. Crystal data are also given as CIF files. This material is available free of charge via the Internet at http://pubs.acs.org.

OM800664P

⁽⁴²⁾ Programs: Standard Data Reduction using HKL (Denzo and Scalepack): (a) Otwinowski, Z; Minor, W. Processing of X-ray diffraction data collected in oscillation mode. *Methods Enzymol.* **1997**, *276*, 307. (b) Absorption Correction: Sheldrick, G. M. SADABS, Version 2007/2; Bruker AXS Inc.: Madison, WI, 2007.

⁽⁴³⁾ Sheldrick, G. M. Acta Crystallogr. 2008, A64, 112.

⁽⁴⁴⁾ International Tables for X-ray Crystallography; Kluwer Academic Publishers: Dordrecht, 1992; Vol. C, pp 500, 219, and 193.
(45) Farrugia, L. J. J. Appl. Crystallogr. 1999, 32, 837.