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Abstract: Hydrogenase enzymes in nature use hydrogen as
a fuel, but the heterolytic cleavage of H�H bonds cannot be
readily observed in enzymes. Here we show that an iron
complex with pendant amines in the diphosphine ligand
cleaves hydrogen heterolytically. The product has a strong
Fe-H···H-N dihydrogen bond. The structure was determined by
single-crystal neutron diffraction, and has a remarkably short
H···H distance of 1.489(10) � between the protic N-Hd+ and
hydridic Fe-Hd� part. The structural data for
[CpC5F4NFeH(PtBu

2N
tBu

2H)]+ provide a glimpse of how the
H�H bond is oxidized or generated in hydrogenase enzymes.
These results now provide a full picture for the first time,
illustrating structures and reactivity of the dihydrogen complex
and the product of the heterolytic cleavage of H2 in a functional
model of the active site of the [FeFe] hydrogenase enzyme.

Use of hydrogen as a fuel by hydrogenase enzymes[1] in
nature requires heterolytic cleavage of the H�H bond into
a proton (H+) and a hydride (H�), a reaction that is also
a critical step in homogeneous catalysts for the hydrogenation
of C=O and C=N bonds.[2] Iron, which is earth-abundant and
inexpensive,[3] is essential in the active site of both the [FeFe]
hydrogenase and the [NiFe] hydrogenase, spurring intense
efforts to model their reactivity with synthetic iron com-
plexes.[4] An understanding of the catalytic oxidation of H2 by
hydrogenases provides insights into the design of synthetic
catalysts that are sought as cost-effective alternatives to the

use of the precious metal platinum in fuel cells.[4b, 5] Crystallo-
graphic studies on the [FeFe] hydrogenase enzyme[6] were
critical to understand its reactivity, but the key H�H bond
cleavage step is not readily observed experimentally in
natural hydrogenases. Limitations on the precise location of
hydrogen atoms by X-ray diffraction can be overcome by use
of neutron diffraction,[7] though its use is often limited by the
difficulty of obtaining suitable crystals and by the scarcity of
neutron sources. We herein report that an iron complex
with a pendant amine in the diphosphine ligand cleaves
hydrogen heterolytically under mild conditions, leading to
[CpC5F4NFeH(PtBu

2N
tBu

2H)]+BArF
4
� (CpC5F4N = tetrafluoropyri-

dylcyclopentadienide; PtBu
2N

tBu
2 = 1,5-di(tert-butyl)-3,7-

di(tert-butyl)-1,5-diaza-3,7-diphosphacyclooctane; ArF = 3,5-
bis(trifluoromethyl)phenyl; Scheme 1). The Fe-H···H-N
moiety has a strong dihydrogen bond,[8] with a remarkably
short H···H distance of 1.489(10) � between the protic N-Hd+

and hydridic Fe-Hd� part. The structural data for
[CpC5F4NFeH(PtBu

2N
tBu

2H)]+ provide a glimpse of how the
H�H bond is oxidized or generated in hydrogenase
enzymes,[9] with the pendant amine playing a key role as
a proton relay.

We previously reported that H2/D2 scrambling is catalyzed
by [CpFe(PPh

2N
Bn

2)(H2)]BArF
4 (Bn = benzyl), which mimics

hydrogenase activity and implicates heterolytic cleavage of
H2 (and D2) by [CpFe(PPh

2N
Bn

2)]BArF
4.

[10] On the basis of
single-crystal X-ray diffraction and solution NMR spectro-
scopic measurements, the H�H distance of the bound H2

ligand of [CpFe(PPh
2N

Bn
2)(H2)]+ was found to be 0.94 �.

Modifying the ligands by adding an electron-withdrawing
C6F5 group to the Cp ligand and changing from benzyl to tert-
butyl groups on the phosphines led to [CpC6F5Fe(PtBu

2N
Bn

2)H],
which is an electrocatalyst for the oxidation of H2.

[11]

The iron complex [CpC5F4NFe(PtBu
2N

tBu
2)Cl] ([1-Cl],

Figure 1) was synthesized and fully characterized by 1H, 31P,
and 19F NMR spectroscopy. Addition of NaBArF

4 readily
produces [CpC5F4NFe(PtBu

2N
tBu

2)]BArF
4 ([1]BArF

4) with
a Lewis acidic Fe center and basic pendant amines in the
diphosphine ligand. While this complex is drawn as having
a vacant coordination site, the pendant amine may be weakly
bound to the Fe, as found for a Mn complex[12] and a Cr
complex[13] with a P2N2 ligand. Further studies to evaluate the
bonding of [1]BArF

4 will be reported.
Exposure of a dark brown solution of [1]BArF

4 to H2

(1 atm) immediately generates an orange solution (Scheme 1)
of [1-FeH(NH)]BArF

4 that has a distinctly different color
from the typical yellow color of similar [Fe(H2)]+ com-
plexes.[10] The formation of [1-FeH(NH)]BArF

4 presumably
proceeds through an unobserved [Fe(H2)]+ intermediate ([1-
Fe(H2)]+) generated by the uptake of H2 by [1]BArF

4
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(Scheme 1). The structure of [1-FeH(NH)]BArF
4 was deter-

mined by single-crystal neutron diffraction, and shows that
heterolytic cleavage of H2 occurred, with the hydride
transferred to the iron core and the proton located on the
pendant amine (Figure 1).[14] The Fe-H distance is 1.544(7) �,
and the N-H distance is 1.097(10) �. The H···H bond distance
of 1.489(10) � is significantly longer than the H�H distance
(0.94 �) of [CpC6F5Fe(PtBu

2N
Bn

2)(H2)]BArF
4.

[11] Although the

covalent H�H bond was cleaved, the remarkably
short H···H separation reveals a strong dihydrogen
bond[8] between the protic NHd+ and the hydridic
FeHd�.

Non-bonding H···H distances are typically
greater than 2.4 �, which is twice the van der
Waals radius for H, though shorter distances have
been found in some molecules with unusual
geometries.[15] The H···H separation observed in
[1-FeH(NH)]BArF

4 is the shortest found for any
H···H distance that is not covalently bound, to the
best of our knowledge. Several iridium complexes
with dihydrogen bonds (Ir-H···H-N) have been
reported by Crabtree and co-workers[16] and by
Morris and co-workers,[17] with the H···H separa-
tions estimated around 1.75–1.9 � on the basis of
X-ray diffraction and/or NMR spectroscopic
measurements. An unusual intermolecular dihy-
drogen bond was characterized by neutron dif-
fraction: the adduct formed between indole and
[ReH5(PPh3)3] exhibited an H···H separation of
1.734(8) �.[18]

If the structure of [1-FeH(NH)]+ in solution
were the same as that established in the solid state
by neutron diffraction, then a resonance for Fe-H
would be expected in the 1H NMR spectrum with
a chemical shift similar to the resonance at
�16.0 ppm for [CpFe(PPh

2N
Bn

2)(H)].[10] Instead,
a broad singlet integrating to two protons was
observed at �5.30 ppm in CD2Cl2 at 22 8C and

remained unchanged at �80 8C. A 15N–1H heteronuclear
single-quantum coherence (HSQC) spectrum of [1-
FeH(NH)]BArF

4 in CD2Cl2 at �70 8C exhibits a cross peak
between the resonance of the pendant amine nitrogen atom
(�293 ppm in the 15N NMR spectrum) and the resonance at
�5.36 ppm (Figure S3). These and other NMR spectroscopy
experiments, including deuterium (2H) labeling, are consis-
tent with rapid intramolecular hydride–proton exchange of
the FeH and NH resonances. This dynamic behavior indicates
extremely fast, reversible heterolytic formation and cleavage
of the H�H bond through the intermediate [1-Fe(H2)]+,
where the H�H bond is regenerated. Dynamic NMR studies
lead to an estimated lower limit of the exchange rate of 2.2 �
104 s�1 at �80 8C, corresponding to a rate of approximately
2.2 � 107 s�1 at 22 8C (see the Supporting Information for
details). A similar reversible heterolytic cleavage of H2 was
recently observed in a MnH/NH complex that also has
pendant amines in the diphosphine ligand.[12]

DFT calculations show that [1-FeH(NH)]+ is approxi-
mately 0.65 kcalmol�1 more stable than [1-Fe(H2)]+

(Figure 2). The transition state for the heterolytic cleavage
of H2 was located, giving a reaction barrier of DG� =

3.29 kcal mol�1, which is consistent with the estimated max-
imum value (< 7.3 kcal mol�1, see the Supporting Informa-
tion) from the NMR experiments. The low calculated barrier
suggests that the rate of reversible heterolytic cleavage may
be much higher than the estimated lower limit from the NMR
experiments. The H�H distance calculated for [1-Fe(H2)]+ is
0.87 �; it elongates to 0.95 � in the transition state, and is

Figure 1. Molecular structure of [1-FeH(NH)]BArF
4 determined by neu-

tron diffraction, showing thermal ellipsoids at 50% probability. For
clarity, the methyl substituents of the PtBu

2N
tBu

2 ligand, the BArF
4
�

anion, the co-crystallized fluorobenzene molecule, and hydrogen
atoms bonded to carbon atoms are omitted. Selected distances (�)
and angles (8) for [1-FeH(NH)]+: H1A···H1B 1.489(10); Fe1–H1B
1.544(7); N1–H1A 1.079(6); H1B-H1A-N1 155.6(8); P1-Fe1-P2
83.62(11).

Scheme 1. Top: Synthesis of the 16-electron unsaturated Fe complex (open square
indicates a vacant coordination site) and its reaction with H2, leading to the
heterolytic cleavage product. Photographs at the right side show NMR tubes
containing [1]+ and [1-FeH(NH)]+. Bottom: Analogous binding of H2 and heterolytic
cleavage of H2 by the [FeFe] hydrogenase.
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calculated as 1.37 � in [1-FeH(NH)]+. A natural bonding
orbital (NBO) analysis gives a Wiberg bond index of 0.1
between the hydride and the proton, suggesting a substantial
dihydrogen bonding interaction. The calculated energy of
[CpC6F5Fe(PtBu

2N
Bn

2)(H2)]+ is 2.63 kcalmol�1 more stable than
the FeHNH tautomer [CpC6F5Fe(PtBu

2N
Bn

2H)(H)] (Figure 2),
with an activation barrier of 5.09 kcal mol�1 for the H�H bond
cleavage [CpC6F5Fe(PtBu

2N
Bn

2)(H2)]+. The calculated barrier is
consistent with our experimental observation of the [Fe(H2)]+

tautomer.[10] Our experimental and computational studies
clearly show that carefully controlled changes in the elec-
tronic properties of the ligand shifts the thermodynamics of
these Fe complexes to favor either H�H retention or
heterolytic cleavage.

[1-FeH(NH)]BArF
4 is an electrocatalyst for oxidation of

H2, so it serves as a functional model for the catalytic activity
of [FeFe] hydrogenase enzymes. The cyclic voltammogram of
[1-Cl] exhibits a reversible one-electron oxidation wave
corresponding to the FeIII/FeII couple at �0.54 V versus the

Cp2Fe+/0 couple (Figure 3, red trace). [1-FeH(NH)]BArF
4

exhibits quasi-reversible redox waves at 0.29 V (FeIII/II

couple) and �1.53 V (FeII/I couple; Figure 3, blue trace).
The addition of an excess amount of base (N-methylpyrro-
lidine) to a solution of [1-FeH(NH)]BArF

4 led to the catalytic
oxidation of H2, as indicated by the plateau shape observed at
a half-wave potential of �0.86 V (Figure 3, green trace). The
turnover frequency for the oxidation of H2 was determined to
be 0.9 s�1. The overpotential at the half-wave potential was
determined to be 95 mV (see the Supporting Information for
the determination of the rate constant and overpotential).
The proposed mechanism is analogous to that proposed for
[CpC6F5Fe(PtBu

2N
Bn

2)H].[11]

These results provide a full picture of the structures and
reactivity of the [Fe(H2)]+ complex and the product of the
heterolytic cleavage of H2 in a functional model of the active
site of the [FeFe] hydrogenase enzyme. DFT calculations by
Fan and Hall on a structural model of the [FeFe] hydrogenase
provided theoretical evidence for a [Fe(H2)] species and
subsequent intramolecular H�H bond cleavage.[19] The resul-
tant Fe-H···H-N species had a dihydrogen bond with a com-
puted H···H distance of 1.472 �, which is nearly identical to
the H···H distance we found in [1-FeH(NH)]+. However, the
Fe(H2) and Fe-H···H-N states of the active site of hydro-
genase have never been experimentally observed. Rauchfuss
and co-workers recently reported[20] a structural study of
a model of the [FeFe] hydrogenase active site ([(H)Fe2-
(S2NH)(CO)2(dppv)2]

2+, where S2NH is the protonated aza-
dithiolate ligand [(SCH2)2NH2]

� and dppv is cis-C2H2(PPh2)2)
featuring a dihydrogen bond between a terminal iron hydride
and the NH proton. In that complex, the H···H distance was
determined by X-ray diffraction as 1.88(7) �. The dihydrogen
bond of [(H)Fe2(S2NH)(CO)2(dppv)2]

2+ was formed by pro-
tonation of the azadithiolate ligand of the precursor, [(H)Fe2-
(S2N)(CO)2(dppv)2]

+, rather than by heterolytic cleavage of
H2; observation of the corresponding dihydrogen complex
[(H2)Fe2(S2N)(CO)2(dppv)2]

2+ has not been reported.
Our results provide experimental support for the previ-

ously proposed binding of H2 to the distal Fe in the ferrous
oxidation state (dashed blue rectangle in Scheme 1) of the
[FeFe] hydrogenase enzyme and the participation of a pend-
ant amine in the heterolytic cleavage of the bound dihydrogen
molecule. The product of heterolytic cleavage has a strong Fe-
H···H-N dihydrogen bond.

Experimental Section
The synthesis of NaCpC5F4N, PtBu

2N
tBu

2 [Fe(PtBu
2N

tBu
2)Cl2],

[CpC5F4NFe(PtBu
2N

tBu
2)Cl], and [CpC5F4NFe(PtBu

2N
tBu

2)]BArF
4, experi-

mental details of single-crystal X-ray diffraction and electrochemical
H2 oxidation, and DFT calculations are given in the Supporting
Information.

[CpC5F4NFe(PtBu
2N

tBuNtBuH)(H)]BArF
4, [1-FeH(NH)]BArF

4: [1-Cl]
(0.135 g, 0.200 mmol) and NaBArF

4 (0.190 g, 0.210 mmol) were
dissolved in fluorobenzene (5 mL). Then H2 gas (1.0 atm) was
purged through the solution, resulting in a rapid color change from
dark to orange, indicating the formation of [1-FeH(NH)]BArF

4,
which was confirmed by 1H NMR and 31P{1H} NMR spectroscopy.
After filtration to remove insoluble solids, [1-FeH(NH)]BArF

4 was
precipitated by adding pentane (60 mL) to the filtrate. The resulting

Figure 2. Computed lowest free energy pathway of H2 cleavage by
[1-Fe(H2)]

+ (solid line) and [CpC6H5Fe(PtBu
2N

Bn
2)(H2)]

+ (dotted line).

Figure 3. Cyclic voltammograms that indicate catalytic oxidation of H2

(1.0 atm) using [1-FeH(NH)]BArF
4 (1.0 mm) in the presence of

N-methylpyrrolidine (60mm). The red trace is a cyclic voltammogram
of [1-Cl] (1.0 mm). The blue trace is a cyclic voltammogram of
[1-FeH(NH)]BArF

4 (1.0 mm) generated in situ from [1-Cl] by adding
1.0 equiv NaBArF

4 under 1.0 atm H2. The green trace is a cyclic
voltammogram recorded after adding 60 equiv N-methylpyrrolidine
(60 mm). Conditions: scan rate 20 mVs�1, PhF as solvent, 0.1m

nBu4NB(C6F5)4 as supporting electrolyte; glassy carbon working elec-
trode. Potentials are referenced to Cp2Fe+/0.
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solid was collected by filtration and dried under vacuum for 30 min.
The isolated [1-FeH(NH)]BArF

4 (0.254 g, yield, 82 %) was stored
under H2 in a glovebox. Alternatively, [1-FeH(NH)]BArF

4 can be
prepared from [1]BArF

4 and H2. Elemental analysis (%) calcd for [1-
FeH(NH)]BArF

4 (C62H58BN3F28FeP2): C, 49.46; H, 3.88; N, 2.79.
Found: C, 49.73; H, 4.13; N, 2.59. 1H NMR ([D5]PhCl, 22 8C): d = 7.99
(s, 8H, B(C8F6H3)4), 7.38 (s, 4H, B(C8F6H3)4), 4.82 (s, 2H, C6F5C5H4),
4.26 (s, 2H, C6F5C5H4), 3.00 (s, 2H, NCH2C6H5), 2.05 (d, JHH =

10.0 Hz, 2H, NCH2C6H5), 1.98 (s, 2H, NCH2P), 1.86 (d, JHH =
10.0 Hz, 2H, NCH2P), 0.76 (t, JPH = 10.0 Hz, 18 H, PC(CH3)3), 0.62
(s, 9H, NC(CH3)3), 0.59 (s, 9H, NC(CH3)3), �7.06 ppm (s, br, 2H, the
averaged signal of FeH and NH). In CD2Cl2 at 22 8C and at �80 8C,
the averaged resonance of FeH and NH appears at �5.36 ppm.
31P{1H} NMR ([D5]PhCl): d = 91.3 ppm. 19F NMR ([D5]PhCl): d =
�87.7 (m, 2 F, C5F4N), �137.3 ppm (m, 2 F, C5F4N). 15N–1H HSQC
(heteronuclear single-quantum correlation spectroscopy, CD2Cl2,
�70 8C): a cross peak was observed between the proton resonance
at �5.30 ppm (the averaged signal of FeH and NH) and the nitrogen
resonance at �294 ppm (NH) (see Figure S3).

Neutron diffraction studies: The single-crystal neutron diffraction
experiment was performed using the TOPAZ single-crystal time-of-
flight Laue diffractometer at the Spallation Neutron Source, Oak
Ridge National Laboratory.[21] Details are provided in the Supporting
Information.

Received: February 4, 2014
Published online: && &&, &&&&

.Keywords: enzyme models · hydrogen · hydrogenases · iron ·
neutron diffraction

[1] a) J. A. Cracknell, K. A. Vincent, F. A. Armstrong, Chem. Rev.
2008, 108, 2439 – 2461; b) C. Tard, C. J. Pickett, Chem. Rev. 2009,
109, 2245 – 2274; c) J. C. Fontecilla-Camps, A. Volbeda, C.
Cavazza, Y. Nicolet, Chem. Rev. 2007, 107, 4273 – 4303.

[2] a) R. Noyori, Angew. Chem. 2002, 114, 2108 – 2123; Angew.
Chem. Int. Ed. 2002, 41, 2008 – 2022; b) A. A. Mikhailine, M. I.
Maishan, A. J. Lough, R. H. Morris, J. Am. Chem. Soc. 2012, 134,
12266 – 12280; c) W. Zuo, A. J. Lough, Y. Li, R. H. Morris,
Science 2013, 342, 1080 – 1083.

[3] a) Catalysis Without Precious Metals (Ed.: R. M. Bullock),
Wiley-VCH, Weinheim, 2010 ; b) R. M. Bullock, Science 2013,
342, 1054 – 1055.

[4] a) S. Ogo, K. Ichikawa, T. Kishima, T. Matsumoto, H. Nakai, K.
Kusaka, T. Ohhara, Science 2013, 339, 682 – 684; b) T. R.
Simmons, V. Artero, Angew. Chem. 2013, 125, 6259 – 6261;
Angew. Chem. Int. Ed. 2013, 52, 6143 – 6145.

[5] a) M. Hambourger, M. Gervaldo, D. Svedruzic, P. W. King, D.
Gust, M. Ghirardi, A. L. Moore, T. A. Moore, J. Am. Chem. Soc.
2008, 130, 2015 – 2022; b) S. Krishnan, F. A. Armstrong, Chem.
Sci. 2012, 3, 1015 – 1023; c) F. Gloaguen, T. B. Rauchfuss, Chem.
Soc. Rev. 2009, 38, 100 – 108; d) M. L. Singleton, N. Bhuvanesh,

J. H. Reibenspies, M. Y. Darensbourg, Angew. Chem. 2008, 120,
9634 – 9637; Angew. Chem. Int. Ed. 2008, 47, 9492 – 9495.

[6] a) J. W. Peters, W. N. Lanzilotta, B. J. Lemon, L. C. Seefeldt,
Science 1998, 282, 1853 – 1858; b) Y. Nicolet, C. Piras, P. Legrand,
C. E. Hatchikian, J. C. Fontecilla-Camps, Structure 1999, 7, 13 –
23.

[7] R. Bau, R. G. Teller, S. W. Kirtley, T. F. Koetzle, Acc. Chem. Res.
1979, 12, 176 – 183.

[8] a) T. Richardson, S. de Gala, R. H. Crabtree, P. E. M. Siegbahn,
J. Am. Chem. Soc. 1995, 117, 12875 – 12876; b) R. Custelcean,
J. E. Jackson, Chem. Rev. 2001, 101, 1963 – 1980.

[9] a) G. Berggren, A. Adamska, C. Lambertz, T. R. Simmons, J.
Esselborn, M. Atta, S. Gambarelli, J. M. Mouesca, E. Reijerse,
W. Lubitz, T. Happe, V. Artero, M. Fontecave, Nature 2013, 499,
66 – 69; b) A. Silakov, B. Wenk, E. Reijerse, W. Lubitz, Phys.
Chem. Chem. Phys. 2009, 11, 6592 – 6599; c) J. Esselborn, C.
Lambertz, A. Adamska-Venkatesh, T. Simmons, G. Berggren, J.
Noth, J. Siebel, A. Hemschemeier, V. Artero, E. Reijerse, M.
Fontecave, W. Lubitz, T. Happe, Nat. Chem. Biol. 2013, 9, 607 –
609.

[10] T. Liu, S. Chen, M. J. O�Hagan, M. Rakowski DuBois, R. M.
Bullock, D. L. DuBois, J. Am. Chem. Soc. 2012, 134, 6257 – 6272.

[11] T. Liu, D. L. DuBois, R. M. Bullock, Nat. Chem. 2013, 5, 228 –
233.

[12] E. B. Hulley, K. D. Welch, A. M. Appel, D. L. DuBois, R. M.
Bullock, J. Am. Chem. Soc. 2013, 135, 11736 – 11739.

[13] M. T. Mock, S. Chen, R. Rousseau, M. J. O�Hagan, W. G.
Dougherty, W. S. Kassel, D. L. DuBois, R. M. Bullock, Chem.
Commun. 2011, 47, 12212 – 12214.

[14] CCDC 984485 (X-ray diffraction), 984486 (neutron diffraction)
contain the supplementary crystallographic data for this paper.
These data can be obtained free of charge from The Cambridge
Crystallographic Data Centre via www.ccdc.cam.ac.uk/data_
request/cif.

[15] J. Zong, J. T. Mague, R. A. Pascal, Jr., J. Am. Chem. Soc. 2013,
135, 13235 – 13237.

[16] a) R. H. Crabtree, P. E. M. Siegbahn, O. Eisenstein, A. L.
Rheingold, T. F. Koetzle, Acc. Chem. Res. 1996, 29, 348 – 354;
b) E. Peris, J. C. Lee, Jr., J. R. Rambo, O. Eisenstein, R. H.
Crabtree, J. Am. Chem. Soc. 1995, 117, 3485 – 3491; c) J. C.
Lee, Jr., E. Peris, A. L. Rheingold, R. H. Crabtree, J. Am. Chem.
Soc. 1994, 116, 11014 – 11019.

[17] A. J. Lough, S. Park, R. Ramachandran, R. H. Morris, J. Am.
Chem. Soc. 1994, 116, 8356 – 8357.

[18] J. Wessel, J. C. Lee, Jr., E. Peris, G. P. A. Yap, J. B. Fortin, J. S.
Ricci, G. Sini, A. Albinati, T. F. Koetzle, O. Eisenstein, A. L.
Rheingold, R. H. Crabtree, Angew. Chem. 1995, 107, 2711 –
2713; Angew. Chem. Int. Ed. Engl. 1995, 34, 2507 – 2509.

[19] H.-J. Fan, M. B. Hall, J. Am. Chem. Soc. 2001, 123, 3828 – 3829.
[20] M. E. Carroll, B. E. Barton, T. B. Rauchfuss, P. J. Carroll, J. Am.

Chem. Soc. 2012, 134, 18843 – 18852.
[21] G. Jogl, X. Wang, S. A. Mason, A. Kovalevsky, M. Mustyakimov,

Z. Fisher, C. Hoffman, C. Kratky, P. Langan, Acta Crystallogr.
Sect. D 2011, 67, 584 – 591.

.Angewandte
Communications

4 www.angewandte.org � 2014 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim Angew. Chem. Int. Ed. 2014, 53, 1 – 5
� �

These are not the final page numbers!

http://dx.doi.org/10.1021/cr0680639
http://dx.doi.org/10.1021/cr0680639
http://dx.doi.org/10.1021/cr800542q
http://dx.doi.org/10.1021/cr800542q
http://dx.doi.org/10.1021/cr050195z
http://dx.doi.org/10.1002/1521-3757(20020617)114:12%3C2108::AID-ANGE2108%3E3.0.CO;2-Z
http://dx.doi.org/10.1002/1521-3773(20020617)41:12%3C2008::AID-ANIE2008%3E3.0.CO;2-4
http://dx.doi.org/10.1002/1521-3773(20020617)41:12%3C2008::AID-ANIE2008%3E3.0.CO;2-4
http://dx.doi.org/10.1021/ja304814s
http://dx.doi.org/10.1021/ja304814s
http://dx.doi.org/10.1126/science.1244466
http://dx.doi.org/10.1126/science.1247240
http://dx.doi.org/10.1126/science.1247240
http://dx.doi.org/10.1126/science.1231345
http://dx.doi.org/10.1002/ange.201302908
http://dx.doi.org/10.1002/anie.201302908
http://dx.doi.org/10.1021/ja077691k
http://dx.doi.org/10.1021/ja077691k
http://dx.doi.org/10.1039/c2sc01103d
http://dx.doi.org/10.1039/c2sc01103d
http://dx.doi.org/10.1039/b801796b
http://dx.doi.org/10.1039/b801796b
http://dx.doi.org/10.1002/ange.200803939
http://dx.doi.org/10.1002/ange.200803939
http://dx.doi.org/10.1002/anie.200803939
http://dx.doi.org/10.1126/science.282.5395.1853
http://dx.doi.org/10.1016/S0969-2126(99)80005-7
http://dx.doi.org/10.1016/S0969-2126(99)80005-7
http://dx.doi.org/10.1021/ar50137a003
http://dx.doi.org/10.1021/ar50137a003
http://dx.doi.org/10.1021/ja00156a032
http://dx.doi.org/10.1021/cr000021b
http://dx.doi.org/10.1038/nature12239
http://dx.doi.org/10.1038/nature12239
http://dx.doi.org/10.1039/b905841a
http://dx.doi.org/10.1039/b905841a
http://dx.doi.org/10.1038/nchembio.1311
http://dx.doi.org/10.1038/nchembio.1311
http://dx.doi.org/10.1021/ja211193j
http://dx.doi.org/10.1038/nchem.1571
http://dx.doi.org/10.1038/nchem.1571
http://dx.doi.org/10.1021/ja405755j
http://dx.doi.org/10.1039/c1cc15430c
http://dx.doi.org/10.1039/c1cc15430c
http://dx.doi.org/10.1021/ja407398w
http://dx.doi.org/10.1021/ja407398w
http://dx.doi.org/10.1021/ja407398w
http://dx.doi.org/10.1021/ja407398w
http://dx.doi.org/10.1021/ja00117a017
http://dx.doi.org/10.1021/ja00103a017
http://dx.doi.org/10.1021/ja00103a017
http://dx.doi.org/10.1021/ja00097a049
http://dx.doi.org/10.1021/ja00097a049
http://dx.doi.org/10.1002/ange.19951072213
http://dx.doi.org/10.1002/ange.19951072213
http://dx.doi.org/10.1002/anie.199525071
http://dx.doi.org/10.1021/ja004120i
http://dx.doi.org/10.1021/ja309216v
http://dx.doi.org/10.1021/ja309216v
http://dx.doi.org/10.1107/S090744491101496X
http://dx.doi.org/10.1107/S090744491101496X
http://www.angewandte.org


Communications

Heterolytic H2 Cleavage
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Heterolytic Cleavage of Hydrogen by an
Iron Hydrogenase Model: An Fe-H···H-N
Dihydrogen Bond Characterized by
Neutron Diffraction

Caught in the act : The addition of H2 to
a synthetic iron complex containing
a pendant amine (a model complex for
[FeFe] hydrogenase) leads to facile
heterolytic cleavage of H2. Neutron dif-

fraction indicates a very short H···H bond
distance of 1.489(10) � in the Fe-H···H-N
complex, thus providing a glimpse of how
the H�H bond is oxidized in hydrogenase
enzymes.
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