

Journal of Organometallic Chemistry 551 (1998) 387-389

Short communication

Palladium–copper–DMF complexes involved in the oxidation of alkenes ¹

Takahiro Hosokawa ^{a,*}, Toshihiro Nomura ^b, Shun-Ichi Murahashi ^b

^a Department of Environmental Systems Engineering, Faculty of Engineering, Kochi University of Technology, Tosayamada, Kochi 782, Japan ^b Department of Chemistry, Faculty of Engineering Science, Osaka University, Machikaneyama, Toyonaka, Osaka 560, Japan

Received 30 April 1997

Abstract

Treatment of $PdCl_2(MeCN)_2$ and CuCl with *N*,*N*-dimethylformamide (DMF) under O₂ gives polymeric complex [(PdCl₂)₂CuCl₂(DMF)₄]_n (1) and Pd–Cu heterometallic complex 2 containing O atom derived from molecular oxygen. © 1998 Elsevier Science S.A.

Keywords: Palladium; Copper chloride; Molecular oxygen; DMF; Alkene

The ketonization of terminal alkenes with water by $PdCl_2$ -CuCl catalyst under O_2 is one of the representative metal-catalyzed oxidations, where *N*,*N*-dimethylformamide (DMF) is commonly used as the solvent (Eq. (1)) [1–7]. The role of this solvent is considered to lie in dissolving $PdCl_2$ and CuCl as well as the hydrophobic higher terminal alkene to a solution. However, there have been no reports referring to the participation of DMF as a ligand of the catalyst system. From the reaction of $PdCl_2$ and CuCl with amides such as hexamethylphosphoramide or 2-pyrrolidinone under O_2 , we have recently succeeded in the isolation of Pd-Cuamide complexes [8,9]. Our attention has thus directed towards the nature of the catalyst system shown in Eq. (1). Described herein is the isolation of a Pd-Cu-DMF complex from this system, which acts as the catalyst for the oxidation widely used in organic synthesis.

When $PdCl_2(CH_3CN)_2$ and CuCl were allowed to react with DMF in $ClCH_2CH_2Cl$ under O_2 at ambient temperature, a brown suspension turned to a deep brown solution. As the O_2 consumption proceeded, precipita-

tion of insoluble complex gradually occurred. After the O_2 uptake stopped, addition of ether followed by filtration afforded a brown complex **1** (mp 146–150°C (dec)) in 43% yield based on Pd. Recrystallization of **1** from dichloromethane–methanol–ether gave dark brown crystals of [(PdCl₂)₂CuCl₂(DMF)₄]_n (**1**) which were suitable for X-ray analysis. Addition of ether to the filtrate mentioned above followed by standing at room temperature for 2 days gave another dark brown complex **2** (mp 135–138°C (dec)) which is considered to

^{*} Corresponding author.

¹ Dedicated to Professor Peter Maitlis on the occasion of his 65th birthday.

⁰⁰²²⁻³²⁸X /98 / \$19.00 © 1998 Elsevier Science S.A. All rights reserved

Fig. 1. ORTEP drawing of a part of polymeric complex **1** with adopted atom numbering scheme. Hydrogen atoms on carbon atoms were omitted for clarity. Selected bond length (Å) and angles (°) with esds in parenthesis: Cu-Cl(1) 2.916(2), Pd(1)–Cl(1) 2.279(2), Pd(1)–Cl(2) 2.257(2), Pd(1)–Cl(3) 2.328(2), Pd(1)–Cl(3') 2.326(2), Cu-O(1) 1.934(4), Cu-O(2) 1.958(4); CuCl(1)–Pd(1) 116.96(6), Cl(1)–Pd(1)–Cl(2) 91.84(6), Cl(2)–Pd(1)–Cl(3) 90.58(6), Cl(3)–Pd(1)–Cl(3') 85.91(6), Cl(3')–Pd(1)–Cl(1) 91.69(6), O(1)–Cu–Cl(1) 93.9(1), O(2)–Cu–Cl(1) 93.7(1), O(1)–Cu–O(2) 91.7(2).

contain an O atom derived from O_2 (Eq. (2)) (vide infra).

$$PdCl_{2}(MeCN)_{2} + CuCl + DMF \xrightarrow{O_{2}}_{ClCH_{2}CH_{2}Cl}$$
$$[(PdCl_{2})_{2}CuCl_{2}(DMF)_{4}]_{n} (\mathbf{1}) + (PdCl_{2})_{x}$$
$$(CuO)_{y}(DMF)_{z} (\mathbf{2})$$
(2)

The ORTEP drawing of 1^2 (Fig. 1) shows a polymeric structure which consists of alternative units of $CuCl_2(L)_4$ (L = DMF) and dimeric PdCl₂. The Cu and Pd units are linked by μ -Cl atoms, and this structural feature is fundamentally the same as that of $[(PdCl_2)_2CuCl_2(2-pyrrolidinone)_4]_n$ reported previously [9]. Although the bond distance of Cu(1)-Cl(1) [Cu(1)-Cl(1), 2.916(2)] is slightly longer than that of $[(PdCl_2)_2CuCl_2(2-pyrrolidinone)_4]_n$ [Cu-Cl(1), 2.823(1)], the distance is within the sum of van der Waals radius of Cu and Pd. In addition, the bond length of Cl(1)-Pd(1) is normal [Cl(1)-Pd(1), 2.279(2) A; Cu-Cl(1)-Pd(1), 116.96(6)°]. Therefore, the complex 1 can be said to be bimetallic. The Cu atom is on a crystallographic center of symmetry and is arranged in tetragonal bipyramidal structure by two μ -Cl atoms and four amides (L). The four amides coordinate to Cu atom via their carbonyl groups, forming a square plane. The bond lengths between Cu and the amide oxygen atoms [Cu(1)-O(1), 1.934(4) Å; Cu(1)-O(2), 1.958(4) Å] are normal [10,11].

As for complex 2, no crystals suitable for X-ray analysis were obtained; however, the following observations indicate that the complex 2 is a Pd–Cu heterometallic complex bearing an O atom derived from O₂. (i) The reaction of complex 2 with 1-decene under an *inert* atmosphere gives 2-decanone smoothly, and simple calculation shows that ~90% of the O atom contained in 2 is transfered into the alkene. ³ (ii) The IR spectrum of complex 2 shows a band at ~ 570 cm⁻¹ due to ν_{Cu-O} absorption [12], and X-ray signals of Cu and Pd were detected by EDS (Energy Dispersive X-ray Spectroscopy).

The formation of complex **1** is viewed as the following sequence. (i) CuCl reacts with O₂ to form Cl–Cu– O–O–Cu–Cl which disproportionates to CuCl₂(L)_n (L = DMF) and a copper oxo species formally represented by [Cu = O] [13–16]. (ii) CuCl₂(L)_n (n = 4) combines with two PdCl₂ to afford one unit of the complex **1** (Eq. (2)). In the reaction with HMPA, the disproportionation mentioned here is also presumed to take place, affording [(PdCl₂)₂CuCl₂(HMPA)₂]_n (**3**) and μ_4 -oxo complex (PdCl₂)₆(CuO)₄(HMPA)₄ (**4**) as shown in Eq. (3). The μ_4 -oxo complex **4** is formed by assembly of 4 [L–Cu = O] (L = HMPA) and 6 PdCl₂. In the reaction with DMF, similar assembly could result in the formation of (PdCl₂)_x(CuO)_y(DMF)_z (**2**) as shown in Eq. (2).⁴

$$PdCl_{2}(MeCN)_{2} + CuCl + HMPA \xrightarrow[CICH_{2}CH_{2}Cl]{\rightarrow} CICH_{2}CH_{2}Cl_{2}Cl_{2}(HMPA)_{2}]_{n} (\mathbf{3}) + (PdCl_{2})_{6} (CuO)_{4}(DMF)_{4} (\mathbf{4})$$
(3)

In order to examine whether the heterometallic complex obtained acts as a catalyst for the oxidation shown

² Crystallographic Data for 1: $C_{12}H_{28}N_4O_4Pd_2CuCl_6$, mw = 781.44, dark brown crystal (0.3×0.3×0.3 mm), monoclinic, space group *C2/c* (No. 15), *a* = 20.095(5), *b* = 9.182(4), *c* = 16.647(3) Å, $\beta = 116.81(1)^\circ$, *V* = 2741(1) Å³, *Z* = 4, $D_{calc} = 1.89$ g cm⁻³. The structure was refined to *R* = 3.8% and $R_w = 3.5\%$ for 2528 reflections.

³ The O₂ uptake in the reaction of Eq. (2) is dependent on the amount of DMF used. When DMF is used in more than 10-fold excess per CuCl (Pd/Cu = 1), the O₂ uptake becomes nearly constant. For example, ~ 2.6 ml (~ 0.1 mmol) of O₂ was consumed per 0.5 mmol of CuCl under the conditions using PdCl₂(CH₃CN)₂ (0.5 mmol), CuCl (0.5 mmol), and DMF (10 mmol) in ClCH₂CH₂Cl (5 ml) at 35°C under O₂ for 2 h. This reaction gave 0.065 g of complex **2** and 0.084 g of complex **1**. When the complex **2** (0.065 g) obtained was reacted with 1-decene (1 mmol, 0.19 ml) under *argon* atmosphere (2 h, ClCH₂CH₂Cl-DMF), 0.18 mmol of 2-decanone was formed (glc analysis with *n*-tridecane as internal standard). If O₂ molecules absorbed (~ 0.1 mmol) in Eq. (2) are all incorporated into 0.065 g of **2**, the O atom transfer from **2** to the alkene can be calculated to be ~ 90%.

⁴ Purification of complex **2** is difficult because of its insolubility into various solvents. From several elemental analyses of **2**, its composition appears to be around x = 4, y = 5, and z = 6.

in Eq. (1), 1-decene (1 mmol) was allowed to react with water in DMF (1 ml) in the presence of complex 1 (0.1 mmol) and O_2 (balloon) at 50°C for 2 h (Eq. (4)). Although the rate of reaction was dependent on the amount of water used, the complex 1 was found to catalyse the reaction. Thus, in the presence of 0.2 mmol of water under the conditions mentioned above, 2-decanone was formed in 200% yield based on Pd. When

the amount of water was increased to 5 mmol, the yield of 2-decanone was 720%. Combined with the isolation of Pd–Cu heterometallic complexes, this result strongly suggests that the oxidation of alkenes with water by a PdCl₂–CuCl–O₂ system in DMF (Eq. (1)) may be catalysed by a Pd–Cu–DMF heterometallic complex such as **1**, as an alternative to the well-documented redox–catalysis of palladium and copper [8].

Acknowledgements

The authors are grateful to Department of Chemical Engineering, Faculty of Engineering Science, Osaka University for the scientific support by 'Gas–Hydrate Analyzing System (GHAS)'.

References

- J. Tsuji, Palladium Reagents and Catalysts, Innovation in Organic Synthesis, Wiley, New York, 1995, pp. 19–124.
- [2] J. Tsuji, Synthesis 369 (1984).
- [3] J. Tusji, H. Nagashima, H. Nemoto, Org. Synth. 62 (1984) 9.
- [4] B.M. Trost, T.R. Verhoeven, Comprehensive Organometallic Chemistry, in: Wilkinson, G. (Ed.), Oxford, Vol. 8, 1982, pp. 854–983.
- [5] D.R. Fahey, E.A. Zuech, J. Org. Chem. 39 (1974) 3276.

- [6] P.M. Maitlis, The Organic Chemistry of Palladium, Vol. 2, Academic Press, 1971, pp. 77–101.
- [7] W.H. Clement, C.M. Selwitz, J. Org. Chem. 29 (1964) 241.
- [8] T. Hosokawa, M. Takano, S.-I. Murahashi, J. Am. Chem. Soc. 118 (1996) 3990.
- [9] T. Hosokawa, M. Takano, S.-I. Murahashi, H. Ozaki, Y. Kitagawa, K.-I. Sakaguchi, Y. Katsube, J. Chem. Soc., Chem. Commun., 1994, 1433.
- [10] G. Davies, M.F. El-Shazly, M.W. Rupich, M.R. Churchill, F.J. Rotella, J. Chem. Soc., Chem. Commun., 1978, 1045.
- [11] A.J. Blake, R.E.P. Winpenny, Acta Cryst. C49 (1993) 799.
- [12] M.R. Churchill, G. Davies, M.A. El-Sayed, J.P. Hutchinson, M.W. Rupich, Inorg. Chem. 21 (1982) 995.
- [13] C.E. Kramer, G. Daives, R.B. Davis, R.W. Slaven, J. Chem. Soc. Chem. Commun. 1975, 606.
- [14] P. Capdevielle, J. Baranne-Lafont, D. Sparfel, N.K. Cuong, M. Maumy, J. Mol. Catal. 17 (1988) 59.
- [15] P. Capdevielle, D. Sparfel, J. Baranne-Lafont, N.K. Coung, M. Maumy, M.J. Chem. Soc. Chem. Commun., 1990, 565.
- [16] P.P. Paul, Z. Tyeklár, R.R. Jacobson, K.D. Karlin, J. Am. Chem. Soc. 113 (1991) 5322.