A Facile Enantioselective Synthesis of the Dimeric Pyranonaphthoquinone Core of the Cardinalins

Margaret A. Brimble,* Jennifer S. Gibson, Jimmy J. P. Sejberg, Jonathan Sperry

Department of Chemistry, University of Auckland, 23 Symonds Street, Auckland 1142, New Zealand Fax +64(9)3737422; E-mail: m.brimble@auckland.ac.nz Received 11 January 2008

Abstract: The enantioselective synthesis of a dimeric pyranonaphthoquinone closely related to cardinalin 3 is described. Key steps include the Hauser–Kraus annulation between a cyanophthalide and a chiral enone to create the naphthalene skeleton, a Suzuki–Miyaura homocoupling of an aryl triflate to construct the biaryl bond and a double stereoselective lactol reduction to install the 1,3-*cis* stereochemistry of the pyran rings.

Key words: cardinalin, pyranonaphthoquinone antibiotics, Hauser–Kraus annulation, homocoupling

The pyranonaphthoquinone family of antibiotics exhibits activity against a variety of Gram-positive bacteria, pathogenic fungi and yeasts¹ and they have been proposed to act as bioreductive alkylating agents.² Whilst the synthesis of monomeric members of this important family of antibiotics is well documented,^{1b,c} the enantioselective total synthesis of a dimeric pyranonaphthoquinone antibiotic has yet to be achieved.^{1,3}

The cardinalins are a series of biologically active dimeric pyranonaphthoquinone pigments isolated from the New Zealand toadstool *Dermocybe cardinalis*⁴ that have aroused considerable interest in our laboratory. The simplest member of the family, cardinalin 3 possesses two *cis*-1,3-dimethylpyran rings that are fused to their respective naphthoquinone nuclei that in turn are linked via a C8–C8' biaryl bond and exists as a single atropisomer (Scheme 1). Our long-standing interest in the synthesis of pyranonaphthoquinones^{1b,c} combined with the challenging dimeric structure and biological activity of the cardinalins prompted us to instigate a synthetic program towards their synthesis.

In light of the fact that no enantioselective synthesis of a dimeric pyranonaphthoquinone currently exists in the literature, it was decided to focus initially on the asymmetric synthesis of the biaryl core of cardinalin 3, namely model dimeric pyranonaphthoquinone **1** (Scheme 1). This work follows on from several syntheses of dimeric pyranonaphthoquinones where the issue of enantioselectivity was not addressed.^{1,3}

The retrosynthesis is based on our own methodology for the stereoselective construction of *cis*-1,3-dimethylpyran rings which has recently been implemented in an enantio-

SYNLETT 2008, No. 6, pp 0867–0870 Advanced online publication: 11.03.2008 DOI: 10.1055/s-2008-1042896; Art ID: D02008ST © Georg Thieme Verlag Stuttgart · New York selective total synthesis of the topoisomerase II inhibitor eleutherin.⁵ Thus in the present work, model dimer **1** was envisaged to be accessible via a double stereoselective reduction⁶ of a bislactol that in turn would be accessible by double intramolecular pyran ring formation. The naphthoquinone core can be formed using a Hauser–Kraus annulation^{7,8} and a late stage Suzuki–Miyaura homocoupling of a suitable aryl triflate to form the key biaryl bond.

Scheme 1 Retrosynthetic analysis of model dimer 1

During our preliminary synthetic efforts towards the related dimeric pyranonaphthoquinone crisamicin A, we encountered limited success using a double Hauser–Kraus annulation with a biscyanophthalide as a means to access the biaryl core.⁹ Our revised strategy reported herein focuses on conducting the key homocoupling step to forge the biaryl unit at an advanced stage of the synthesis. Towards this end, Hauser–Kraus annulation of a suitably protected cyanophthalide with an enone coupling partner was envisaged as a crucial step to construct an appropriately functionalized monomeric naphthalene ring. Given that chiral enone **4** was in hand,⁵ attention turned to the synthesis of the benzyl-protected cyanophthalide **3** that upon annulation with enone **4** could be easily converted into an aryl triflate substrate ready for the proposed latestage homocoupling.

Thus, by simple modification of a literature procedure,¹⁰ 6-methoxyphthalide¹¹ was subjected to radical ring opening with N-bromosuccinimide. The resulting crude acid thus obtained was then converted into its diethylamide via the acid chloride furnishing amide 5^{12} . The methyl ether surprisingly resisted all attempts to effect its cleavage with conventional Lewis acids (BBr₃, BCl₃, AlCl₃), leading to degradation and only trace amounts of product being isolated. Fortunately, the use of thiophenol in the presence of catalytic quantities of potassium carbonate at elevated temperature in N-methylpyrrolidinone¹³ successfully furnished phenol 6 in good yield. Smooth benzylation followed by ring closure by using trimethylsilyl cyanide in the presence of catalytic quantities of potassium cyanide and 18-crown-614 delivered the cyanophthalide annulation precursor 3 (Scheme 2).

Scheme 2 Reagents and conditions: (i) NBS, CCl_4 –PhH, reflux, 6 h then H₂O, 90 °C, 2 h; (ii) SOCl₂, 70 °C, 2 h; (iii) HNEt₂, CH_2Cl_2 , 0 °C to r.t., 2 h, 42% (3 steps); (iv) PhSH, K₂CO₃, NMP, 130 °C, 2 h, 77%; (v) BnBr, K₂CO₃, acetone, r.t., 16 h; (vi) TMSCN, 18-crown-6, KCN, CH₂Cl₂, 0 °C to r.t., 2 h then AcOH, r.t., 16 h, 90% (2 steps).

With cyanophthalide **3** in hand, the stage was now set for the key Hauser–Kraus annulation. Thus, reaction of cyanophthalide **3** with enone **4** proceeded smoothly in the presence of potassium *tert*-butoxide in DMSO. Immediate reductive methylation of the crude annulation product with potassium carbonate and dimethylsulfate under phase-transfer conditions was necessary to facilitate isolation of the product **7**. Facile debenzylation delivered phenol **8** that underwent smooth triflate formation using *N*trifluoromethanesulfonimide in the presence of DMAP and triethylamine furnishing the key aryl triflate homo-

Scheme 3 Reagents and conditions: (i) KOt-Bu, DMSO, r.t., 30 min then Me_2SO_4 , K_2CO_3 , Me_2SO_4 , TBAI, $Na_2S_2O_4$, THF– H_2O , r.t., 2 h, 87%; (ii) H_2 , Pd/C, MeOH, r.t., 18 h, 97%; (iii) PhN(OTf)₂, DMAP, Et₃N, CH₂Cl₂, r.t., 1 h, 95%.

coupling precursor **2** in excellent overall yield (Scheme 3).

Next, the key Suzuki–Miyaura homocoupling step was undertaken. After careful optimization, it was found that microwave irradiation (300 W, 150 °C) of a dioxane solution of triflate **2** with precisely 0.5 equivalents of bis(pinacolato)diboron, three equivalents of freshly ground dried potassium carbonate under Cl₂Pd(dppf)–dppf catalysis (10 mol%) for one hour gratifyingly afforded the homocoupled product **9**¹⁵ in 51% yield in a one-pot operation (Scheme 4).

With a synthetic route to biaryl **9** successfully established, the double pyran ring formation could next be attempted. Treatment of biaryl **9** with an excess of tetrabutylammonium fluoride in tetrahydrofuran effected removal of both

Scheme 4 *Reagents and conditions*: (i) Cl₂Pd(dppf) (10 mol%), dppf, K₂CO₃, bis(pinacolato)diboron, dioxane, microwave, 150 °C, 1 h, 51%.

Scheme 5 Reagents and conditions: (i) TBAF, THF, r.t., 72 h (ii) TFA, CH_2Cl_2 , -78 °C, 30 min then Et_3SiH , r.t., 16 h, 70% (2 steps); (iii) CAN, MeCN-H₂O, r.t., 45 min, 63%.

tert-butyldiphenylsilyl ether protecting groups with concomitant in situ cyclization. Due to the unstable nature of bislactol **10** it was immediately reduced to the bis-*cis*-1,3dimethylpyran **11**¹⁶ with trifluoroacetic acid and triethylsilane following the procedure described by Kraus.⁶ The formation of a single product was observed by ¹H NMR indicating the formation of the all *cis*-diastereomer resulting from pseudo-axial delivery of the hydride during the reduction step.⁶

The 1,3-*cis* stereochemistry was confirmed unequivocally by the NOE correlation between the axial protons at C1 and C3 on the pyran ring. Finally, CAN-mediated oxidative demethylation provided the bisquinone 7,7'-demethoxy-9,9'-deoxycardinalin 3 (1,¹⁷ Scheme 5).

In conclusion, we have achieved an efficient synthesis of the dimeric core structure of cardinalin 3, representing the first enantioselective synthesis of a dimeric pyranonaphthoquinone. The combined use of a Hauser–Kraus annulation followed by a Suzuki–Miyaura homocoupling provides a flexible synthetic strategy for the synthesis of the cardinalins and related dimeric pyranonaphthoquinones. Work towards this end is in progress.

Acknowledgment

The authors thank the Royal Society of New Zealand Marsden fund for financial support.

References and Notes

- For reviews regarding isolation, structure, and synthesis of pyranonaphthoquinone antibiotics, see: (a) Brimble, M. A.; Duncalf, L. J.; Nairn, M. R. *Nat. Prod. Rep.* **1999**, *16*, 267.
 (b) Brimble, M. A.; Nairn, M. R.; Prabaharan, H. *Tetrahedron* **2000**, *56*, 1937. (c) Sperry, J.; Bachu, P.; Brimble, M. A. *Nat. Prod. Rep.* **2008**, in press; DOI: 10.1039/b708811f.
- (2) Moore, H. W.; Czerniak, R. Med. Res. Rev. 1981, 1, 249.

- (3) For racemic syntheses of dimeric pyranonaphthoquinones, see: (a) Brimble, M. A.; Duncalf, L. J.; Neville, D. J. Chem. Soc., Perkin Trans. 1 1998, 4165. (b) Brimble, M. A.; Lai, M. Y. H. Org. Biomol. Chem. 2003, 1, 4227. (c) Brimble, M. A.; Lai, M. Y. H. Org. Biomol. Chem. 2003, 1, 2084. (d) For a racemic synthesis of cardinalin 3, see: Govender, S.; Mmutlane, E. M.; van Otterlo, W. A. L.; de Koning, C. B. Org. Biomol. Chem. 2007, 5, 2433.
- (4) (a) Gill, M.; Buchanan, M. S.; Yu, J. J. Chem. Soc., Perkin Trans. 1 1997, 919. (b) Gill, M.; Buchanan, M. S.; Yu, J. Aust. J. Chem. 1997, 50, 1081.
- (5) Gibson, J. S.; Andrey, O.; Brimble, M. A. *Synthesis* **2007**, 2611.
- (6) Kraus, G. A.; Molina, M. T.; Walling, J. A. J. Chem. Soc., Chem. Commun. 1986, 1568.
- (7) (a) Hauser, F. M.; Rhee, R. P. J. Org. Chem. 1978, 43, 178.
 (b) Kraus, G. A.; Sugimoto, H. Tetrahedron Lett. 1978, 19, 2263.
- (8) For recent reviews on the Hauser–Kraus annulation, see:
 (a) Rathwell, K.; Brimble, M. A. Synthesis 2007, 643.
 (b) Mal, D.; Pahari, P. Chem. Rev. 2007, 107, 1892.
- (9) Andrey, O.; Sperry, J.; Larsen, U. S.; Brimble, M. A. *Tetrahedron* **2008**, in press.
- (10) (a) Denes, B.; Szantay, C. Arch. Pharm. 1958, 342. (b) For a similar example employing molecular bromine, see: Abaev, V. T.; Dmitriev, A. S.; Gutnov, A. V.; Podelyakin, S. A.; Butin, A. V. J. Heterocycl. Chem. 2006, 43, 1195.
- (11) Brimble, M. A.; Burgess, C. V. Synthesis 2007, 754.
- (12) Mill, R. J.; Taylor, N. J.; Snieckus, V. J. Org. Chem. 1989, 54, 4372.
- (13) Nayak, M. K.; Chakraborti, A. K. Tetrahedron Lett. 1997, 38, 8749.
- (14) Kaiser, F.; Schwink, L.; Velder, J.; Schmalz, H.-H. J. Org. Chem. 2002, 67, 9248; and references therein.
- (15) Compound **9**: colorless oil; $[a]_D^{25} 21.8$ (c 2.5, CH₂Cl₂); IR (oil): $v_{max} = 3070$, 3049, 2959, 2932, 2894, 1679, 1588, 1450, 1427, 1348, 1330, 1204, 1112 cm⁻¹. ¹H NMR (400 MHz, CDCl₃): $\delta = 0.97$ [18 H, s, $2 \times C(CH_3)_3$], 0.98 (6 H, d, ${}^{3}J_{HH} = 6.0$ Hz, $2 \times CH_3$), 2.48 (6 H, s, $2 \times C=OCH_3$), 2.90 (2 H, dd, ${}^{2}J_{HH} = 13.4$ Hz, ${}^{3}J_{HH} = 7.5$ Hz, $2 \times CHH$), 3.11 (2 H, dd, ${}^{2}J_{HH} = 13.4$ Hz, ${}^{3}J_{HH} = 6.7$ Hz, $2 \times CHH$), 3.81 (6 H, s, $2 \times OCH_3$), 3.90 (6 H, s, $2 \times OCH_3$), 4.27 [2 H, ddq (app. sext), ${}^{3}J_{HH} = 7.5$, 6.7, 6.0 Hz, $2 \times CH$], 7.27 (4 H, m, ArH), 7.38 (8 H, m, ArH), 7.54 (4 H, dd, J = 8.1, 1.3 Hz, ArH), 7.66 (4 H, dd, J = 8.1, 1.6 Hz, ArH), 7.93 (2 H, dd, J = 8.8, 1.8 Hz, ArH), 8.15 (2 H, d, J = 8.8 Hz, ArH), 8.36 (2 H, d, J = 8.8

Synlett 2008, No. 6, 867-870 © Thieme Stuttgart · New York

- 1.8 Hz, ArH). ¹³C NMR (100 MHz, CDCl₃): $\delta = 19.1$ {2 × Si[*C*(CH₃)₃]}, 23.4 (2 × CHCH₃), 27.0 {2 × Si[*C*(CH₃)₃]}, 32.8 (2 × C=OCH₃), 37.0 (2 × CH₂), 61.8 (2 × OCH₃), 63.7 (2 × OCH₃), 69.6 (2 × CH), 120.6 (2 × CH_{arom}), 123.7 (2 × CH_{arom}), 124.8 (2 × C_{arom}), 126.8 (2 × CH_{arom}), 127.4 (8 × CH_{arom}), 127.9 (2 × C_{arom}), 128.3 (2 × C_{arom}), 129.40 (2 × CH_{arom}), 129.43 (2 × CH_{arom}), 134.27 (2 × C_{arom}), 134.31 (2 × C_{arom}), 134.7 (2 × C_{arom}), 135.8 (4 × CH_{arom}), 135.9 (4 × CH_{arom}), 138.6 (2 × C_{arom}), 149.3 (2 × C_{arom}), 151.6 (2 × C_{arom}), 205.3 (2 × C=O). MS– FAB: *m/z* (%) = 1050 (4) [M]⁺, 993 (6) [M – C(CH₃)₃]⁺, 795 (14), 397 (10), 197 (40), 135 (100). HRMS–FAB: *m/z* calcd for C₆₆H₇₄O₈Si₂ [M]⁺: 1050.4922; found: 1050.4921.
- (16) Compound **11**: cream-colored solid; mp 268–269 °C; $[a]_D^{24}$ +36.2 (c 0.12, CH₂Cl₂). IR (CH₂Cl₂): v_{max} = 3418, 3053, 2986, 1638, 1421, 1264, 733 cm⁻¹. ¹H NMR (300 MHz, CDCl₃): δ = 1.44 (6 H, d, ³J_{HH} = 6.0 Hz, 2 × CHCH₃), 1.73 (6 H, d, ³J_{HH} = 6.6 Hz, 2 × CHCH₃), 2.66 (2 H, dd, ²J_{HH} = 16.2 Hz, ³J_{HH} = 11.0 Hz, 2 × CHH), 3.11 (2 H, dd, ²J_{HH} = 16.2 Hz, ³J_{HH} = 1.5 Hz, 2 × CHH), 3.74 (2 H, m, 2 × CHCH₃), 3.91 (6 H, s, 2 × OCH₃), 3.95 (6 H, s, 2 × OCH₃), 5.26 (2 H, q, ³J_{HH} = 6.6 Hz, 2 × CHCH₃), 7.89 (2 H, dd, ³J_{HH} = 8.8 Hz, ⁴J_{HH} = 1.6 Hz, ArH), 8.18 (2 H, d, ³J_{HH} = 8.8 Hz, ArH), 8.37 (2 H, d, ⁴J_{HH} = 1.6 Hz, ArH). ¹³C NMR (75 MHz, CDCl₃): δ = 21.8 (2 × CHCH₃), 22.4 (2 × CHCH₃), 32.0 (2 × CH₂), 61.1 (2 × OCH₃), 61.4
- $\begin{array}{l} (2\times {\rm OCH_3}), 69.6\ (2\times {\rm CH}), 71.3\ (2\times {\rm CH}), 120.4\\ (2\times {\rm CH_{arom}}), 122.8\ (2\times {\rm CH_{arom}}), 125.5\ (2\times {\rm C_{arom}}), 125.7\\ (2\times {\rm CH_{arom}}), 126.6\ (2\times {\rm C_{arom}}), 127.7\ (2\times {\rm C_{arom}}), 129.9\\ (2\times {\rm C_{arom}}), 138.3\ (2\times {\rm C_{arom}}), 148.8\ (2\times {\rm C_{arom}}), 149.0\\ (2\times {\rm C_{arom}}).\ {\rm MS}\ ({\rm EI}):\ m/z\ (\%) = 542\ (100)\ [{\rm M}]^+, 527\ (39),\\ 199\ (22), 105\ (32), 57\ (40), 44\ (72).\ {\rm HRMS}\ ({\rm EI}):\ m/z\ {\rm calcd}\\ {\rm for}\ {\rm C_{34}H_{38}O_6\ [{\rm M}]^+: 542.2668;\ found:\ 542.2667.\\ \end{array}$
- (17) Compound 1: yellow solid; mp 239–240 °C; $[\alpha]_D^{23}$ +356.1 (*c* 0.15, CH₂Cl₂). IR (CH₂Cl₂): $v_{max} = 3432, 3025, 1663, 1265,$ 736, 705 cm⁻¹. ¹H NMR (400 MHz, CDCl₃): δ = 1.40 (6 H, d, ${}^{3}J_{\text{HH}} = 6.1 \text{ Hz}, 2 \times \text{CHC}H_{3}$), 1.58 (6 H, d, ${}^{3}J_{\text{HH}} = 6.5 \text{ Hz}$, $2 \times CHCH_3$), 2.31 (2 H, ddd, J_{HH} = 18.7, 10.2, 4.0 Hz, $2 \times CH_{ax}H$), 2.82 (2 H, dt, J_{HH} = 18.7, 2.5 Hz, $2 \times CH_{eq}H$), 3.64 (2 H, m, 2 × CHCH₃), 4.89 (2 H, m, 2 × CHCH₃), 8.02 $(2 \text{ H}, \text{ dd}, {}^{3}J_{\text{HH}} = 8.0 \text{ Hz}, {}^{4}J_{\text{HH}} = 1.9 \text{ Hz}, \text{ ArH}), 8.20 (2 \text{ H}, \text{ d},$ ${}^{3}J_{\text{HH}} = 8.0, \text{ ArH}$), 8.35 (2 H, ${}^{4}J_{\text{HH}} = 1.9 \text{ Hz}, \text{ ArH}$). ${}^{13}\text{C}$ NMR $(100 \text{ MHz}, \text{CDCl}_3): \delta = 20.8 (2 \times \text{CHCH}_3), 21.2$ $(2 \times CHCH_3)$, $30.5 (2 \times CH_2)$, $68.7 (2 \times CH)$, $70.0 (2 \times CH)$, $125.0 (2 \times CH_{arom}), 127.3 (2 \times CH_{arom}), 131.4 (2 \times CH_{arom}),$ 131.9 (2 × C_{arom}), 133.0 (2 × C_{arom}), 143.0 (2 × C_{arom}), 144.2 $(2 \times C_{arom})$, 147.0 $(2 \times C_{arom})$, 183.4 $(2 \times C=0)$, 183.7 $(2 \times C=O)$. MS (EI): m/z (%) = 482 (100) [M]⁺, 467 (20), 237 (15), 199 (20), 131 (21), 91 (99), 77 (25), 57 (37), 40 (85). HRMS (EI): *m/z* calcd for C₃₀H₂₆O₆ [M]⁺: 482.1729; found: 482.1720.