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Abstract: Aziridinocyclobutenes react with electron-deficient or ring- structure ofLl0 was supported by NMR data and presumed to &ié&se
strained alkenes to produce 7-azanorbornenes in a novel 1,3-dipolaitack of the DMAD ontdhe a-face of the 1,3-dipolar intermedia®e
cycloaddition reaction suitable ferock assembly protocols. Benzo-7- formed by ring-opening of the aziridine (Scheme 3). Support for this
azanorbornadiene and 7-heterobridged analogues react stereoselectiymigposal is provided by the formation of a yellow colour when aziridine
to produce compounds wilynfacial orientation of theibridges. 8 is heated alone in toluerié Colour formation is lost on cooling and
regenerated on heating, indicating the reversibility of the ring-opening

7-Azanorbornanes have received much interest following the discoveryocleSS; fr:{lrthelri(thj. colohurl |fs discharged immediately on the addition of
of the analgesic properties of epibatidibgScheme 1) and several Ipolarophiles like dimethyl fumarate.
specialist syntheses of this alkaloid have appeared in the recent Formation of B-BLOCK
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Following the success of our recently described ACE reaction (Scheme
2, equation 1) for the synthesis of 7-oxanorbornénes,reasoned that —— e —
the development of an aziridine equivalent (aza-ACE reaction, Scheme 10

2, equation 2) held much potential for the synthesiNdiridged
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alicyclics, especially 7-azanorbornanes. This is the subject of the ohe nE
present letter where we demonstrate the versatility of thisenegk ﬁb 7 b b
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reaction by the synthesis of the first examples syhfacial
polynorbornane systems containing multipkbridges’

Scheme 3
ACE Reaction
B - R
E{éo . St a ) — £ M High stgregselectiyity is observgd in the .reaction of the aziridinigh
- R ethylenic dienophiles, eg maleic anhydritieforms a single product,
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aza-ACE Reaction shown to be theexofused adductt219 by the existence of an nOe

] r 7o R " between Ha and H{Scheme 3). Norbornadiene (in excess) also reacts
[tNg — Shlo | — QB @ smoothly with aziridine8 to yield a single 1:1-addud4.’® An nOe
- R observation between Ha and Hb again defines the stereochemistry as
exo,excfused between the norborneneexd¢attack on the
norbornadiene) and the newly-formed 7-azanorbornane subunit
(diastereoselective attack at tindace of the 1,3-dipole).
The aziridinocyclobutan® required to test the potential of the aza-ACE

;:r?uglmg reactt)lon vx;gsgérfp?r:ed asl O;Jtltmed 'lnzsg,hegi ‘T’l Cogvtﬁrsmn wa order to assess the ability of tlR.OCK reactions to produce
€ benzonorbornadien o the cyclobutene-1,2-diestefotiowed the [n]polynorbornanes containing multipl&-heterobridges, we have

established method of Mitsudo and co-workers, which employs thgtudied the aza-ACE reaction of the 7-aza-bridged dipolaropileth
r;t:ﬂ?lljurg—cgtalyseq addfmon IOfb dlmeéthyl ahcetyllenelldlcslr(t))oxwate aziridine 8 (Scheme 4). This reaction afforded a single diastereomer
( ). onversion of cyclobuten® to the triazoline was 160 which was assigned the extended-frame structure on the basis of

Z_ChIeved by ther;nal add.lt.lg.n ecifo benzyl a:?azd Ellm'nstlor_] Olfl nOe enhancement between Ha and Hb, an experiment which was
Initrogen to produce aziridin was conducted photochemically conducted at 60 °C because Nfsubstituent isomerisatiors. It was

(Hgngvna 450 watt Hg lamp, .quartg, benzene, RT)_' The synthesis %fossible to produce a polynorbornane with three juxtapbiskeddges
aziridinocyclobutan® was achieved in 40% overall yield for the three by employing theN-bridged aziridind 7:24 indeed reaction of ALoCK

step process from the readily available benzonorbornagiene 15 with aziridine17 formed the [3]po|ynorbornan13810 in which the

three nitrogen bridges are on the same face of the molecule. The
The reactivity of theN-benzyl aziridinocyclobutan® towards 1,3-  structure ofl8 rested on symmetry grounds where the NMR exhibited
dipolar cycloaddition was assessed initially by reaction with excesthe expected £&-symmetry only at elevated temperature (67 °C) owing
DMAD 4 (benzene at reflux) which produced the 1:1-addacf The to N-inversions.
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We next turned our attention to introducing multiple nitrogen bridgeg10)

(6)
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into the polynorbornane via the dual aza-ACE reaction. The required

bis-aziridine211°

cyclobutene-1,2-diester groupslié® are reluctant to add benzyl azigle

was prepared as outlined in Scheme 5. In this case, the

under thermal conditions, but do so satisfactorily when compressed

together at 14 kbdP The resultant mixture of Hsomer20a and o-

isomer 20b is not separated but deazetised photochemically to the

common bis-aziridine 21.1° Reaction of 21 with N-Boc-7-aza-
benzonorbornadienel5 produced the [5]polynorbornane2210

containing four aza-bridges. The structure2@fwas again determined

by NMR spectral symmetry at elevated temperature.
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In conclusion, we have shown that the aza-ACE reaction is a versatile

cycloaddition protocol and a worthy addition to ®uock coupling

program. The high stereoselectivity of the coupling process should

allow the production of polarofacial [n]polynorbornanes containing

multiple heterobridges and these and other novel systems will be

reported in due course.
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New compounds gave satisfactol§C NMR, MS and micro
analytical data or high resolution mass spectra. Representative
physical andH NMR spectral data:

7: m.p. 149-150 °C (ethanoiH NMR (CDCk) 61.74 (1H, dJ =

10.9 Hz); 2.03 (1H, dJ = 10.9 Hz); 2.31 (3H, s); 2.32 (3H, s); 2.35
(1H, d,J = 6.8 Hz); 2.47 (1H, d] = 6.8 Hz); 3.53 (3H, s); 3.66 (1H,
s); 3.84 (3H. s); 4.85 (2H, s); 6.80 (2H, s); 7.30-7.36 (5H, nm).

8: m.p. 135-136 °C (ethanoljH NMR (CDCl) 5 1.92 (1H, dJ =

10.4 Hz); 2.16 (2H, d] = 10.4 Hz); 2.33 (6H, s); 2.44 (2H, s); 3.77
(6H, s); 3.85 (2H, s); 3.98 (2H, s); 6.82 (2H, s); 7.25 (1BI~47.6

Hz); 7.31 (2H, tJ= 7.3 Hz); 7.39 (2H, dJ = 7.3 Hz).

10: m.p. 192-4 °C (methylene chloride/methanotd NMR
(CDClg) 81.93 (1H, d,J = 8.9 Hz); 2.28 (6H, s); 2.48 (2H, s); 3.49
(6H, s); 3.55 (2H, s), 3.70 (1H, d,= 8.9 Hz); 3.76 (2H, s); 3.79
(6H, s); 6.75(2H, s); 7.18-7.28 (5H, m).

12: m.p. 213-214 °C (methylene chloride/petroleum ether 40-
60°C).!H NMR (CDCL) 3 1.35 (1H, d, J = 9.4 Hz); 2.26 (2H, s);
2.28 (6H, s); 3.16 (2H, nm); 3.61 (1H,Xs 9.4 Hz); 3.64 (2H, s);
3.90 (6H, s); 3.92 (2H, s); 6.77 (2H, s); 7.20 (1H4,7.9 Hz); 7.28
(2H,1,J=7.2 Hz); 7.44 (2H, d)= 7.2 Hz).

14: m.p. 199-200 °C (methylene chloride/methanél)l NMR
(CDCly) 6 0.88 (1H, dJ = 8.9 Hz); 1.21 (1H, d) = 9.9 Hz); 1.96
(2H, s); 2.23 (2H, s); 2.26 (6H, s); 2.44 (2H,Jds 8.9 Hz); 2.65
(2H, s); 2.67 (1H, dJ = 9.9 Hz); 3.21 (2H, s); 3.85 (6H, s); 4.36
(2H, s); 6.05 (2H, t) = 1.3 Hz); 6.72 (2H, s); 7.17 (1H,3=7.8

Hz); 7.26 (2H, tJ= 7.3 Hz); 7.47 (2H, A= 7.3 Hz).

16:m.p. 129-130 °GH NMR (60 °C, CDC}) 5 1.09 (1H, dJ=9.6

Hz), 1.90 (2H, s), 2.14 (6H, s), 2.27 (2H, s), 3.04 (2H, s), 3.41 (1H,
d,J=9.6 Hz), 3.74 (6H, s), 3.90 (2H, s), 4.91 (2H, bd s), 5.20 (2H,
s), 6.58 (2H, s), 6.99-7.30 (14H, m).

17: not isolatedH NMR (CDCh) & 2.38 (2H, s), 3.72 (6H, sbr),
3.92 (2H, s), 5.01 (2H, sbr), 5.79 (2H, s), 7.16-7.35 (14H, m).
18:33%, m.p. 172-173 °CH NMR (CDCl, 67 °C)5 2.06 (4H, s),
3.68 (6H, s), 4.00 (2H, s), 4.94 (4H, s), 5.23 (4H, s), 7.02-7.30
(23H, m). Loss of symmetry occurs at ambient.

21: not isolated™H NMR (CDCk) 61.90 (2H, s), 2.15 (4H, s), 3.30
(2H, s), 3.72 (12H, s), 3.99 (4H, s), 7.22-7.40 (10H, m).

22:m.p. 181-183 °C (ether/petroleum ethéiht NMR (CDCh) 6
1.40 (4H, s), 1.94 (2H, s), 2.23 (4H, s), 2.71 (2H, s), 3.69 (12H, s),
3.78 (4H, s), 4.94 (4H, dbr), 5.17 (4H, s), 7.10-7.26 (28H, m).

While there is a precedent for the ring-opening and trapping for the
ACE reaction (Gotthardt, H.; Huisgen, R.; Bayer, H. JO.Am.
Chem. Soc.197Q 92, 4340), there is none for the aziridino
cyclobutane ring-opening. Of course, the ring opening of simple
aziridines to 1,3-dipoles is well documentéd.
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Azides have been reported to react with alkenes under high
pressure. Anderson, G. T.; Henry, J. R.; Weinreb, S.J.MOrg.
Chem.1991 56, 6946.
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