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Abstract: A protocol for the dehydrative amination of alcohols in
water using a water-soluble calix[4]resorcinarene sulfonic acid as a
reusable multifunctional catalyst was developed.
Key words: aminations, calixarenes, green chemistry, host–guest
systems, phase-transfer catalysis

The development of efficient methods for forming car-
bon–nitrogen bonds has received considerable attention in
organic synthesis due to the importance of nitrogen-con-
taining compounds in the production of pharmaceuticals
and fine chemicals.1 Substitution reactions of alkyl ha-
lides, alkyl acetates, or related compounds with amine nu-
cleophiles are one of the most useful types of carbon–
nitrogen bond-forming reactions.2 The atomic efficiency
of substitution reactions may be further enhanced when
alcohols, instead of alkyl halides or alkyl acetates, are
used as substrates, as is the case when water is the sole by-
product of the reaction.3 Therefore, the development of a
procedure for the catalytic amination of alcohols is highly
desirable. Consequently, a number of methods using met-
al catalysts in organic solvent systems have recently been
reported.4,5

Reducing the use of hazardous solvents is one of the most
important challenges presented by the effort to minimize
pollution and risks associated with the production of
chemicals. Accordingly, organic reactions in water with-
out the use of organic solvents have attracted a great deal
of interest in both academic and industrial research.6
Among such reaction systems, aqueous biphasic systems
using water-soluble catalysts have the additional advan-
tage of catalyst recycling after simple decantation or ex-
traction of the organic products.7 However, because of the
low solubility of many organic substrates in water, aque-
ous biphasic systems often exhibit insufficient reaction
rates. To circumvent this problem, polar, water-miscible
co-solvents8 or surfactants9 are frequently used. However,
use of these additives may complicate workup proce-
dures; in particular, product separation and catalyst recov-
ery may be difficult. Recently, our research group
developed a new reaction system, which is based on the
inverse phase-transfer catalysis10 of functionalized water-

soluble calixarenes, to solve this dilemma.11,12 More re-
cently, our group found that a water-soluble calix[4]resor-
cinarene sulfonic acid 1 works as an efficient reusable
catalyst for three-component Mannich-type reactions in
water.13,14 In the reaction system, 1 functions not only as a
Brønsted acid catalyst, but also as an inverse phase-trans-
fer catalyst, due to its ability to form supramolecular host–
guest complexes. In this context, carbon–nitrogen bond-
forming reactions in water using a water-soluble
calix[4]resorcinarene sulfonic acid 1 have been a focus of
our research. This paper presents a method for metal-free
dehydrative amination of alcohols in water15,16 catalyzed
by 1, and it describes the reusability of catalyst 1
(Scheme 1).

Scheme 1 Dehydrative amination of alcohols in water catalyzed
by 1

Initially, various Brønsted acids were examined as cata-
lysts for the amination reaction of trans-1,3-diphenyl-2-
propen-1-ol with p-toluenesulfonamide in water
(Table 1). Common Brønsted acids, such as AcOH, TFA,
MsOH, TsOH, and TfOH, were not effective catalysts of
this reaction (entries 2–6). However, a water-soluble
calix[4]resorcinarene sulfonic acid 1 (10 mol%) was
found to efficiently catalyze the reaction, giving the prod-
uct 2a in excellent yield (entry 7). Moreover, using only 1
mol% of catalyst 1 in the reaction gave the product 2a in
good yield (entry 9). These results suggest that catalyst 1
bearing the hydrophobic cavity forms host–guest com-
plexes with substrates; these complexes are important for
efficient catalysis of the reaction in water. Furthermore, in
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addition to the sulfonamide, the carboxamide and carbam-
ate also could serve as the amine source in the present re-
action system, giving the synthetically useful benzoyl-
and benzyloxycarbonyl-protected amines 2b and 2c in ex-
cellent yields (entries 10 and 11).

Next, the substrate generality of the amination reaction in
water catalyzed by 1 was examined using various allyl
and benzyl alcohols (Table 2).17 Both acyclic and cyclic
allyl alcohols could be used as substrates in this reaction
system (entries 1–3). Also, amination of benzyl alcohols
containing electron-donating or -withdrawing groups oc-
curred cleanly and the corresponding products 3c–3i were
obtained in moderate to excellent yields (entries 4–10).
Substrates containing heteroaromatic alcohols also
worked well in this reaction (entry 7).
The reusability of a calix[4]resorcinarene sulfonic acid
catalyst 1 was examined (Table 3). After each reaction,
the resulting organic products were extracted using ethyl
acetate; the aqueous solution containing the catalyst was
recovered and reused directly in the next cycle. Activity of
catalyst 1 was retained after being recycled multiple
times. Even after recycling the catalyst 1 five times, the
yields were practically identical to those observed when
fresh catalyst was used.
The utility and applicability of the present reaction system
was extended to nucleophilic substitution reactions of al-
cohols with carbon nucleophiles (Scheme 2).16a,18 The
Friedel–Crafts-type substitution reaction of benzhydrol

with 1-methylindole occurred cleanly and afforded the de-
sired product 4a in good yield. The substitution reaction
using an active methylene compound also proceeded
smoothly to give the product 4b. The present reaction sys-
tem has been applied to carbon–sulfur bond formation,16b

giving the desired compound 4c in good yield.

Table 1 Effect of Catalysts

Entry Catalyst (mol%) PG Yield (%)a

1 none Ts 0 (2a)

2 AcOH (10) Ts 0 (2a)

3 TFA (10) Ts 3 (2a)

4 MsOH (10) Ts 2 (2a)

5 TsOH (10) Ts 5 (2a)

6 TfOH (10) Ts 3 (2a)

7 1 (10) Ts 97 (2a)

8 1 (2) Ts 96 (2a)

9 1 (1) Ts 84 (2a)

10 1 (10) Bz 92 (2b)

11 1 (10) Cbz 98 (2c)
a Isolated yield.
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Table 2 Amination of Alcohols in Water

Entry Alcohol Yield (%)a

1 97 (2a)

2 87 (3a)

3 63 (3b)

4b 99 (3c)

5b 99 (3d)

6 97 (3e)

7 50 (3f)

8b 80 (3g)

9 96 (3h)

10 60 (3i)

a Isolated yield.
b Reaction temperature: 100 °C.
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Table 3 Reusability of Catalyst 1

Recycle number Fresh 1st 2nd 3rd 4th 5th

Yield of 2a (%)a 93 92 94 95 93 94

a Isolated yield.
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Scheme 2 Nucleophilic substitution reaction of benzhydrol in water

The proposed mechanism for the calix[4]resorcinarene
sulfonic acid 1-catalyzed dehydrative amination of alco-
hols is shown in Scheme 3. The water-soluble catalyst 1
forms host–guest complexes with alcohols in the organic–
aqueous interfacial layer. The dehydration reaction is pro-
moted by the sulfonic acid moieties on catalyst 1. The re-
sulting allylic or benzylic cation18 undergoes nucleophilic
attack by the amide, giving the amination product 3 with
regeneration of the catalyst 1.

Scheme 3 Proposed mechanism

In summary, a method for calix[4]resorcinarene sulfonic
acid 1-catalyzed dehydrative amination of alcohols in wa-
ter was developed.19 In the reaction system developed in
the present study, catalyst 1 worked, not only as a Brønst-
ed acid catalyst, but also as an inverse phase-transfer cat-
alyst. That is to say, 1 performs dual-function catalysis. It
is noteworthy that the present reaction proceeded under
nonmetallic conditions in water and, furthermore, the
aqueous phase containing catalyst 1 could be readily recy-
cled. This reaction system offers an efficient and green
method for the synthesis of nitrogen-containing com-
pounds.
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