2,4-DIMETHYLENETRICYCLO[3.3.0.0^{3,7}]OCTANE AND 2,9-DIMETHYLENE-TRICYCLO[4.3.0.0^{3,8}]NONANE. SYNTHESIS AND THROUGH-SPACE INTERACTIONS. Rolf Gleiter^{*} and Bernd Kissler

> Institut für Organische Chemie der Universität Heidelberg, Im Neuenheimer Feld 270, D-6900 Heidelberg

A four step synthesis of the title compounds $\underline{3}$ and $\underline{4}$ is reported. The HeI_a-PE-spectra of both compounds reveal a considerable through-space interaction of the π -systems.

In connection with our studies on electronic interactions of π -systems across twisted six- or seven-membered rings as in <u>1</u> or <u>2</u>¹, our attention was also focused on the isomers 2,4-dimethylenetricyclo[3.3.0.0^{3,7}]octane (<u>3</u>) and 2,9-dimethylenetricyclo[4.3.0.0^{3,8}]nonane (<u>4</u>).

The dienes 3 and 4 were prepared from the known² ketones 11 and 12 by the Wittig reaction with methyltriphenylphosphonium bromide/sodium amide (see Scheme 1). The synthesis of ketones 11 and 12 was carried out as described², except that we were able to optimize the cleavage of the oxetanes $\underline{7}$ and $\underline{8}^3$ by treatment with LDA/THF at room temperature⁴. The ketones 11 and 12 could also be converted to the monoenes 13 and 14 by the Wolff-Kishner reaction⁵.

To probe the interactions between the double bonds of $\underline{3}$ and $\underline{4}$, we used HeI_{α}^- photoelectron (PE) spectroscopy. The first ionization energies of $\underline{3}$, $\underline{4}$, $\underline{13}$

6151

and <u>14</u> are collected in **Table 1.** We note that the π bands of <u>13</u> and <u>14</u> are placed at the center of gravity of the first two bands of <u>3</u> and <u>4</u>.

To interpret the PE-data, we compared the calculated orbital energies $(\boldsymbol{\ell}_{j})$ with the recorded vertical ionization energies $(\mathbf{I}_{v,j})$ assuming the validity of Koopmans' theorem⁶. Both methods of calculation (MINDO/3⁷ and HAM/3⁸) predict considerable splitting between π^- (HOMO) and π^+ and a significant admixture of σ -orbitals. A detailed analysis of the canonical wave functions revealed that the initial through space interactions of the π -systems are superimposed on π - σ -interactions, resulting in an overall decrease of the "pure" π - π -splitting by about 50%. In both compounds 3 and 4 we encounter a stronger destabilization of π^+ compared to π^- . The σ -admixture to the π -wave functions amounts to 21%(π^+) and 14%(π^-) for 3 and 28%(π^+) and 10%(π^-) for 4, respectively.

The strong π - π -interactions could be demonstrated by the spontaneous reaction of dienes 3 and 4 with N-phenyltriazolinedione (PTAD), which gave the crystalline homo Diels-Alder adducts 15 and 16.

Table 1 Comparison between the first ionization energies, $I_{v,j}$, of $\underline{3}$, $\underline{4}$, $\underline{13}$ and $\underline{14}$ with calculated orbital energies. Values in eV.

compound	I _{v,j}	assignment	$-\boldsymbol{\varepsilon}_{j}$ (MINDO/3)	- £ j(HAM/3)
	8.60	a"(π ⁻)	9.03	8.96
<u>3</u>	9.40	a'(π ⁺)	9.56	9.35
	10.5	σ	10.28	10.46
	8.70	a"(¤ ⁻)	9.07	8,96
<u>4</u>	9.26	a'(π ⁺)	9.47	9.23
	10.1	σ	10.00	10.17
<u>13</u>	8.96	b(π)	9.34	9.12
	10.2	b(σ)	9,92	10.26
<u>14</u>	9.00	b(π)	9.40	9.01
	9.75	b(g)	9.73	9,95

We are grateful to the Fonds der Chemischen Industrie and the BASF Aktiengesellschaft for financial support. B.K. thanks the state Baden-Württemberg for a scholarship during his dissertation. References and Notes:

Dedicated to Professor Emanuel Vogel on the occasion of his 60th birthday

- B. Kissler, R. Gleiter, Tetrahedron Letters, <u>26</u>, 185 (1985); R. Gleiter, B. Kissler, C. Ganter, Angew.Chem.in press.
- 2) M. Nakazaki, K. Naemura, Y. Kondo, J.Org.Chem. <u>41</u>, 1229 (1976). The authors cleaved the oxetanes <u>7</u> and <u>8</u> by action of either LiNEt₂ in benzene (27% yield) or perchloric acid in methanol (28% yield), the latter reagent causes the production of a side-product.
- 3) R.R. Sauers, J.A. Whittle, J.Org.Chem. <u>34</u>, 3579 (1969); R.R. Sauers, K.W. Kelly, J.Org.Chem. <u>35</u>, 498 (1970); R.R. Sauers, W. Schinski, Tetrahedron Letters, <u>79</u> (1969).
- 4) Most relevant spectroscopic data of 3, 4, 14; 15 and 16:

3: ¹H-NMR (300 MHz, CDCl₃) 6: 4.30 (4H,s), 2.77 (1H,m), 2.65 (2H,m), 2.48 (1H,m), 1.53(4H,s). ^C-NMR (75 MHz, CDCl₃) 6: 160.6, 92.4, 48.7, 43.5, 43.4, 37.1. 4: ¹H-NMR (300 MHz, CDCl₃) 6: 4.64 (1H,s), 4.48 (1H,s), 4.46 (1H,s), $\overline{4.40}$ (1H,s), 2.90 (1H,d, J=5.7 Hz), 2.62 (1H,m), 2.17 (1H,m), 1.87-1.36 (6H,m). ¹C-NMR (75 MHz, CDCl₃) 6: 159.8, 156.4, 98.3, 94.8, 53.3, 43.5, 39.8, 34.4, 32.0, 26.8, 25.8. 14: ¹H-NMR (200 MHz, CDCl₃) 6: 4.51 (1H,s), 4.31 (1H,s), 2.69-2.59 (1H,d,br, J=5.0 Hz), 2.44-2.35 (1H,m), 2.32-2.23 (1H,m), 2.12-2.00 (1H,m), 1.82-1.62 (1H,m), 1.60-1.23 (7H,m). ¹³C-NMR (75 MHz, CDCl₃) 6: 161.7, 96.2, 47.6, 42.9, 38.5, 37.4, 33.9, 33.5, 27.7, 26.7. <u>15</u>: mp 204-205^oC; ¹H-NMR (200 MHz, CDCl₃) 6: 7.63 (1H,m), 7.45-7.42 (2H,m), 7.40-7.35 (2H,m), 4.05 (2H,d, J=12.0 Hz), 3.86 (2H,d, J=12.0 Hz), 2.77 (1H,s,br), 2.60 (2H,s,br), 1.93 (1H,d, J=3.3 Hz), 1.50 (2H,dd, J₁=10 Hz, J₂=3.3 Hz), 1.00 (2H,d, J=10 Hz). <u>16</u>: mp 203-204^OC; ¹H-NMR (300 MHz, CDCl₃) 6: 7.55-7.35 (5H,m), 4.11 (1H,d, J=12.0 Hz), 4.05 (1H,d, J=12.0 Hz), 3.94 (1H,d, J=12.0 Hz), 3.84 (1H,d, J=12.0 Hz), 2.59 (1H,d, J=8.4 Hz), 2.48-2.41 (2H,m), 1.85 (1H,d, J=5.3 Hz), 1.71-1.16 (6H,m).

- 5) Monoene <u>13</u> proved to be identical with a sample obtained by degradation of D_{2d}-dinoradamantane-2-carboxylic acid. See: M. Nakazaki, K. Naemura, N. Arashiba, J.Org.Chem. <u>43</u>, 888 (1978).
- 6) T. Koopmans, Physica, 1, 104 (1934).
- 7) R.C. Bingham, M.J.S. Dewar, D.H. Lo, J.Am.Chem.Soc. 97, 1285 (1975).
- L. Asbrink, C. Fridh, E. Lindholm, Chem. Phys. Letters, <u>52</u>, 63; 69(1977). (Received in Germany 7 September 1987)