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2,4-DIMETEYLENETRICCLO~3.3.0.03~7 IOCTANE AND 2,9-DIMETIMXNE- 

TRICYCLOC4.3.0.0388 INONANE. SYNTHESIS AND THROUGH-SPACE INTERACTIONS. 
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A four step synthesis of the title compounds 3 and 4 is 

reported. The HeIn-PE-spectra of both compounds reveal a 

considerable through-space interaction of the n-systems. 

In connection with our studies on electronic interactions of n-systems 

across twisted six- or seven-membered rings as in !, or L', our attention was 

also focused on the isomers 2,4-dimethylenetricyclo[3.3.0.03f7 loctane (2) 

and 2,9-dimethylenetricyclo14.3.0.03'8 lnonane (2). 

The dienes 2 and 4 were prepared from the known2 ketones c and 2 by the 

Wittig reaction with methyltriphenylphosphonium bromide/sodium amide (see 

Scheme 1). The synthesis of ketones L and z was carried out as described2, 

except that we were able to optimize the cleavage of the oxetanes z and z3 

by treatment with LDA/THF at room temperature4. The ketones 2 and z could 

also be converted to the monoenes 2 and 2 by the Wolff-Kishner reaction 
5 

. 

To probe the interactions between the double bonds of 2 and 2, we used HeI,- 

photoelectron (PE) spectroscopy. The first ionization energies of 3_, 2, E 
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n=t 5 

n=2 6 8 

and 2 are collected in Table 1. We note that the n bands of 2 and 2 are 

placed at the center of gravity of the first two bands of 2 and A. 

+ +? @& @,$ 

13 14 n- TL+ 

To interpret the PE-data, we compared the calculated orbital energies (Cj) 

with the recorded vertical ionization energies (I ,) 
v,1 

assuming the validity 

of Koopmans' theorem 6. Both methods of calculation (MINDO/37 and HAM/38) 

predict considerable splitting between II- (HOMO) and II+ and a significant 

admixture of o-orbitals. A detailed analysis of the canonical wave functions 

revealed that the initial through space interactions of the n-systems are 

superimposed on n-o-interactions, resulting in an overall decrease of the 

"pure" n-n-splitting by about 50%. In both compounds _S and 2 we encounter a 

stronger destabilization of II+ compared to n-. The o-admixture to the n-wave 

functions amounts to 2l%(n+)and 14%(n-) for 3 and 28%(n+)and lO%(n-) for 2, 

respectively. 

The strong n-n-interactions could be demonstrated by the spontaneous 

reaction of dienes 2 and i with N-phenyltriazolinedione (PTAD), which gave 

the crystalline homo Diels-Alder adducts 2 and s. 
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Table 1 Comparison between the first ionization energies, I 
V,j' 

of 2, 51 2 

and 14 with calculated orbital energies. Values in eV. 

-Ej(MIND0/3) -tj(HAM/3) 

9.03 8.96 

9.56 9.35 

10.28 10.46 

compound I 
v,j 

8.60 

2 9.40 

10.5 

assignment 

a"(n-) 

a'(n+) 

a 

8.70 

s 9.26 

10.1 

a"(n-) 9.07 8.96 

a'(n+) 9.47 9.23 

0 10.00 10.17 

11 8.96 b(n) 9.34 9.12 

10.2 b(o) 9.92 10.26 

14 9.00 b(n) 9.40 9.01 

9.75 b(o) 9.73 9.95 
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