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The highly enantioselective conjugate boration of six-membered

and seven-membered cyclic enones and unsaturated esters was

achieved by the use of a copper–(R,S)-Taniaphos complex with

up to 99% ee under optimal conditions.

Catalytic boration reactions of unsaturated C–C bonds with

diboron reagents have emerged as a novel synthetic tool to

afford a variety of organoboron compounds.1 In particular,

the conjugate addition of a diboron reagent to a,b-unsaturated
carbonyl compounds provides ready access to functionalized

organoboron compounds by incorporating a boron group at

the b-position to the carbonyl. This transformation has been

studied with transition metals such as Pt,2 Rh,3 Cu,4 Ni5 and

very recently, with N-heterocyclic carbenes.6 However, there

are only a few reports on asymmetric conjugate boration

reactions4f,7 and the enantioselective boration of cyclic

substrates has not been reported yet.8

Herein, we report a highly enantioselective copper–boryl

(Cu–B) catalyst system effective for the boration of cyclic

carbonyl compounds. Cyclic substrates including enones and

unsaturated lactones served as good substrates for the copper-

catalyzed boration, and b-boryl cyclic compounds were

obtained with a high level of enantioselectivity up to 99% ee.

In initial experiments, a series of copper(I)–chiral phosphine

catalysts were generated in situ by combining a chiral

bisphosphine, CuCl and NaOt-Bu in THF. Their catalytic

efficiency and enantioselectivity were screened using cyclo-

hexenone as substrate using bis(pinacolato)diboron as reagent.

As shown in Table 1, full conversion of the starting cyclic

enone was obtained with all the ligands screened. However,

only low to moderate enantioselectivities were obtained with

the axially chiral bisphosphine ligands (BINAP, p-tol-BINAP,

SEGPHOS), the Duphos and Tangphos ligands (entries 1–5).

The Josiphos ligand (L5), which was quite effective for acyclic

substrates in our previous studies,7a,7b gave the lowest ee of all

for the reaction of cyclohexenone (entry 6). We were pleased to

obtain high levels of enantioselectivity with the copper–Walphos

(L6) and copper–Taniaphos (L7) complexes. When L7 was

employed as the ligand, the resulting boronate product was

produced with particularly high enantiomeric purity (98% ee)

and determined to have the (R) configuration9 (entry 8). The

addition of 2 equiv. of MeOH was necessary for complete

conversion when L6 or L7 were used. When the amount of

alcohol was limited to 1 equiv. relative to the cyclic enone, the

conversion was not complete (B80%) in 24 h although the

enantioselectivity did not change significantly.10

Chiral b-hydroxy carbonyl compounds are useful building

blocks and a successful enantioselective b-boration–oxidation
sequence for cyclic carbonyl compounds can provide an easy

route to the synthesis of such compounds. In contrast to

acyclic b-hydroxy carbonyls, enantiomerically enriched cyclic

b-hydroxy carbonyl compounds are not easily accessible by

either aldol reaction or direct oxy-Michael reactions.11

Enantioselective epoxidation–regioselective ring opening is

another interesting option.12 In this context, the conjugate

boration of several cyclic enones was examined with the

established, optimal reaction conditions using ligand L7 and

methanol (Table 2).

Table 1 Ligand screening.

Entry Ligand Conditiona Time/h Yield (%) ee (%)b

1 (S)-BINAP A 2 93 40 (R)
2 L1 A 2 93 63 (S)
3 L2 A 2 93 43 (S)
4 L3 A 2 94 53 (R)
5 L4 B 24 91 38 (S)
6 L5 A 4 92 13 (S)
7 L6 B 24 90 90 (S)
8 L7 B 24 92 98 (R)

a Condition A: CuCl (3 mol%), NaOt-Bu (3 mol%), ligand (3 mol%)

and MeOH (1 equiv.); condition B: CuCl (2 mol%), NaOt-Bu (3

mol%), ligand (4 mol%) and MeOH (2 equiv.) with 1.1 equiv. B2pin2
in THF. b Determined by chiral HPLC analysis of the corresponding

b-hydroxy naphthoate derivative.
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Cyclohexenones having different substitution patterns were

generally good substrates, giving the corresponding borylated

products 2 with excellent enantioselectivities over 95% ee.13

However, the reaction of 1b, bearing two methyl groups at the

a0-position, had a slower rate of reaction, giving 83% conver-

sion with the Taniaphos ligand (entry 2). The copper-L1

complex was more catalytically active for the reaction of 1b

but the enantioselectivity obtained was slightly lower (88% ee;

entry 3). Cyclic enone 1d with two substituents at the g-
position showed no reactivity. This is probably due to too

much steric congestion near the reaction site and defines the

scope of the current catalytic system. Reaction of the benzyl-

substituted enone 1e afforded a diastereomeric mixture of

boronate products in a 1 : 1.3 ratio, with excellent ee values

of 96% and 499%, respectively (entry 6). The conjugate

boration of cycloheptenone also produced the desired product

in high yield and ee (entry 7). However, cyclopentenone, when

reacted with the copper-L7 catalyst, produced the desired

product 2g with a modest level of enantioselectivity (entry 8).

The optimized reaction protocol was employed with

unsaturated lactone substrates (Scheme 1). Pentenolide 3

produced the boronate ester product in high yield and ee.

Also, initial studies on the formation of chiral tertiary C–B

centers were conducted with b-methylcyclohexenone.

Complete conversion of the starting enone was obtained only

with L3 or L4 among the ligands tested in Table 1.14 However,

the enantioselectivities achieved with these ligands were only

modest and are yet to be improved.

In summary, copper–boryl complexes coordinated with

the Taniaphos ligand is an efficient catalyst system for the

asymmetric conjugate boration of six- and seven-membered

unsaturated cyclic carbonyl compounds. Efficient enantio-

selective formation of secondary C–B bonds was achieved in

good yields and with excellent enantioselectivity. This method

also provides a new catalytic synthetic route to chiral cyclic

b-hydroxy ketones, which are difficult to access otherwise.
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