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Enantioselective Formal C(sp3)-H Bond Activation in the 

Synthesis of Bioactive Spiropyrazolone Derivatives 

Houhua Li,[a] Rajesh Gontla,[a] Jana Flegel,[a,b] Christian Merten,[c] Slava Ziegler,[a] Andrey P. 

Antonchick,*[a,b] and Herbert Waldmann*[a,b] 

 

Abstract: Herein we report the first enantioselective annulation of -

arylidene pyrazolones through a formal C(sp3)-H activation under mild 

conditions enabled by highly variable Rh(III)-Cpx catalysts. The 

method has wide substrate scope proceeds with good to excellent 

yields and enantioselectivity. Its synthetic utility was demonstrated by 

late-stage functionalization of drugs and natural products as well as 

preparation of enantioenriched [3]-dendralenes. Preliminary biological 

investigation also identified the spiropyrazolones as a novel class of 

Hedgehog pathway inhibitors. 

Rh(III)-catalyzed C-H bond activation followed by an annulation 

reaction with alkynes using cyclopentadienyl (Cp) rhodium(III) 

complexes as precatalysts has been explored as a rapid 

approach to construct various heterocycles and carbocycles.[1-4] 

Enantioselective variants have only become possible since the 

introduction of chiral C2-symmetric Cpx ligands by Cramer et al., 

and of an artificial Rh(III)-containing metalloenzyme by Ward and 

Rovis et al.[5-10] Thereafter, You et al. reported the first asymmetric 

annulative dearomatization reaction of β-naphthols with alkynes 

using chiral Rh(III)-Cpx catalysts (Scheme 1a).[7l] In addition, 

carbonyl-directed Rh(III)-catalyzed enantioselective C-H 

activation/spiroannulation reactions have been developed by Lam 

et al. followed by Yu et al.[7h,n] These spiroannulation reactions 

provide unique access to novel classes of enantioenriched 

spirocycles containing all-carbon quaternary centers. Current 

enantioselective variants all include direct activation of aromatic 

C(sp2)-H bonds under relatively demanding reaction conditions 

(Scheme 1a).[7h,l,n] Rh(III)-catalyzed enantioselective 

spiroannulation reactions through activation of alkenyl C(sp2)-H 

and alkyl C(sp3)-H bonds still stand as a great challenge. Relevant 

racemic examples have already been demonstrated recently 

(Scheme 1b).[3a,b,d] 

 

Scheme 1. Enantioselective C-H Activation/Spiroannulation Reactions Using 

Rh(III)-Cpx Catalysts. 

Recently we reported a novel class of piperidine-fused Cpx 

ligands.[10a,11] We envisaged that the above-mentioned 

enantioselective spiroannulation reactions could be steered 

efficiently using our highly variable Rh(III)-Cpx catalysts (Scheme 

1c). Here we describe the first enantioselective annulation of -

arylidene pyrazolones through a formal C(sp3)-H activation under 

mild conditions enabled by Rh(III)-Cpx catalysts.[12] 
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Table 1. Optimization of reaction conditions[a] 

 

Entry Cat. Solvent T (C) Yield (%)[b] ee (%)[c] 

1 3a MeCN 80 56% 69 

2 3a MeCN 23 18% 75 

3 3a MeOH 23 86% 75 

4 3b MeOH 23 46% 81 

5 3c MeOH 23 57% 84 

6 3d MeOH 23 64% 84 

7[d] 3e MeOH 23 82% 86 

8[d] 3e MeOH 0 70% 91 

9[e] 3e MeOH 0 <10 n.d.[f] 

[a] Reaction conditions: 1a (0.15 mmol), 2a (0.10 mol), 3 (5 mol%), Cu(OAc)2 

(2 equiv) in the indicated solvent (4.0 mL), under inert atmosphere unless 

otherwise noted. [b] Isolated yields. [c] Determined by chiral HPLC. [d] Using 

2 equiv of 1a. [e] Under O2 atmosphere. [f] n.d. = not determined. 

Initially, -arylidene pyrazolone (1a) was chosen as model 

substrate (Table 1).[3d,13] The oxidative annulation reaction with 

the nonsymmetrical alkyne (2a) proceeded smoothly at 80 °C 

using 5 mol% of 3a, albeit with only 69% ee (entry 1). Drastically 

reduced reactivity was observed at ambient temperature (entry 2). 

Gratifyingly, upon solvent screening, methanol was found to 

greatly facilitate the annulation reaction at 23 °C with comparable 

enantioselectivity (entry 3). We next screened our highly modular 

and structurally variable Rh(I)-Cpx catalyst library. Compared to 

catalyst 3a and other structurally similar analogues, pseudo C2-

symmetric Cpx ligands 3b-3e proved to be superior in terms of 

induction of enantioselectivity, although slightly lower reactivity 

was observed (entries 4-7). Fine-tuning of catalysts through 

replacement of the 4-fluorophenyl group with a 2-naphthyl 

substituent afforded 3e as most advantageous Rh(I)-Cpx catalyst 

(entry 7). Of note, 3e stands as a new Rh(I)-Cpx catalyst which 

has not been reported before. Finally, the model reaction 

proceeded well at 0 °C and afforded the desired spiropyrazolone 

(4a) with 91% ee (entry 8). The reaction was drastically prohibited 

in the presence of O2 under otherwise identical reaction 

conditions (entry 9).[7l] 

Based on previous reports,[3d] a putative mechanism was 

proposed.[14] A six-membered rhodacycle intermediate is initially 

formed through an enol-directed formal C(sp3)-H activation. In the 

following alkyne insertion step, the C−C bond formation occurs 

preferentially at the alkyne carbon adjacent to the alkyl group, 

thus affords spiropyazolone 4a as a single regioisomer (> 20:1 

r.r.). The absolute configuration of product (4a) was determined 

to be (S) by means of vibrational circular dichroism (VCD) 

spectroscopy.[14] 

 

Scheme 2. Substrate scope of the reaction. Reaction conditions: 1 (0.20 mmol), 

2 (0.10 mol), 3e (5 mol%), Cu(OAc)2 (2 equiv) in MeOH (4.0 mL) at 0 °C under 

inert atmosphere for 72 h. [a] Using 10 mol% of 3e. 

Investigation of the substrate scope using substituted -

arylidene pyrazolones (1a-m) under optimal reaction conditions 
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revealed that both electron-withdrawing and electron-donating 

groups on the ortho-, para-, and meta-position were well tolerated 

and delivered the desired products with good to excellent 

enantioselectivity (Scheme 2, 4a-m). In some cases, the reaction 

outcome was found to be sensitive to the presence of ortho-

substituents presumably due to steric hindrance, and in these 

cases 10 mol% of 3e was required (4g, 4i, 4k). 

Various alkynes (2a-j) were afforded the desired 

spiropyrazolones with enantioselectivities of up to 97% ee 

(Scheme 2, 4n-4y). For the annulation of symmetrical aryl/aryl 

alkynes (4r, 4s) 10 mol% of 3e was specifically required. When a 

more challenging symmetric alkyl/alkyl alkyne was applied, the 

product 4t was formed smoothly, albeit with low enantioselectivity 

(34% ee). Nonetheless, nonsymmetrical alkynes including 

aryl/alkyl (4n-q), vinyl/alkyl (4u, 4v), and heteroaryl/alkyl alkynes 

(4x, 4y) were all excellent reaction partners. Interestingly, when 

1,4-diphenylbutadiyne was tested, mono annulation product (4w) 

was isolated exclusively in 93% ee and no double annulation 

product was detected. Again, for all annulation reactions with 

nonsymmetrical alkynes mentioned above, regioselectivity was 

excellent and only a single regioisomer was detected (> 20:1 r.r.). 

Finally, we performed late-stage functionalization studies of 

drugs and natural product derivatives.[15] As shown in Scheme 3a, 

alkynes were prepared from (R)-(-)-deprenyl (a selective 

Monoamine Oxidase B inhibitor), estrone and (+)--tocopherol 

and then carefully evaluated. To our delight, in all cases we 

obtained exclusively a single diastereoisomer (>95:5 d.r.) upon 

treatment with catalyst 3e. Furthermore, catalyst-directed 

diastereoselective annulation reactions proceeded well, and the 

other diastereoisomers were formed predominantly (>95:5 d.r.) by 

switching the catalyst to ent-3e.[16] 

[3]-Dendralenes have gained widespread attention,[17] as they 

are valuable building blocks for the rapid construction of polycyclic 

frameworks through multiple cycloaddition sequences.[18] To 

further demonstrate the synthetic utility of our annulation reaction, 

we conducted product diversifications through a one-pot allylic 

alcohol oxidation-Wittig reaction of 4a (Scheme 3b).[19] 

Accordingly, a series of unprecedented enantioenriched [3]-

dendralenes was obtained using various Wittig reagents with 

good to excellent yields and enantioselectivity. Of special note, 

the Corey-Fuchs reaction was also compatible with this protocol 

and gave dibromo [3]-dendralene (6g) in 59% isolated yield. Upon 

treatment with PTAD (4-phenyl-1,2,4-triazoline-3,5-dione), further 

diversification of [3]-dendralene (6a) could be realized to afford 

the cycloaddition adduct 7 through Diels-Alder reaction. 

To investigate whether the compound collection modulates 

biological pathways, 72 spiropyrazolones were synthesized and 

subjected to different cell-based screens, including an osteoblast 

differentiation assay that indirectly monitors Hedgehog (Hh) 

signaling activity in pluripotent mouse mesenchymal C3H10T1/2 

cells upon stimulation with purmorphamine.[20] Hh signaling is 

essential for embryonic development and highly important for 

stem cell homeostasis and tissue regeneration.[21,22] Constitutive 

activation of Hh signaling is associated with the development and 

progression of various types of cancer, including 

medulloblastoma and basal cell carcinoma.[22,23] Therefore, novel 

small-molecule modulators of the Hh pathway are in high 

demand.[22] 

 

Scheme 3. Late-stage functionalization and product diversification. [a] Reaction 

conditions: 1 (0.20 mmol), 2 (0.10 mol), 3e or ent-3e (5 mol%), Cu(OAc)2 (2 

equiv) in MeOH (4.0 mL) at 0 °C under inert atmosphere for 72 h. [b] 

Diastereomeric ratios (d.r.) were determined based on 1H NMR analysis of 

crude reaction mixtures. [c] Diastereomeric ratios (d.r.) were determined by 

chiral HPLC. 1,2-DCE = 1,2-dichloroethene. 

Gratifyingly, several spiropyrazolones inhibited osteogenesis 

with half-maximal inhibitory concentrations (IC50) in the low 
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micromolar range, as detected by reduced activity of the 

osteogenic marker alkaline phosphatase.[24] The most potent 

compound 4f inhibited Hh-dependent osteogenesis with a half 

maximal inhibitory concentration (IC50) of 3.6 ± 0.8 µM. To confirm 

the Hh inhibition, compound 4f was additionally characterized in 

an orthogonal, GLI-dependent reporter gene assay using Shh-

LIGHT2 cells.[25] In this assay, compound 4f inhibited the GLI-

dependent expression of the reporter firefly luciferase with an IC50 

of 8.8 ± 0.5 µM.[14] Therefore, the chemotype defined by 

spiropyrazolones defines a structurally novel class of Hedgehog 

pathway inhibitors. 

In summary, we demonstrated the first enantioselective 

annulation of -arylidene pyrazolones through a formal C(sp3)-H 

activation under very mild conditions enabled by highly variable 

Rh(III)-Cpx catalysts. The method gave access to a set of 

structurally diverse spiropyrazolones containing all-carbon 

quaternary centers in high yields and with high enantioselectivity. 

Preliminary biological investigation in different cellular assays led 

to the identification of the spiropyrazolones as a novel class of 

Hedgehog pathway inhibitors. 
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The first Rh(III)-catalyzed enantioselective annulation of -arylidene pyrazolones 

through a formal C(sp3)-H activation under very mild conditions was developed 

using a novel chiral Cpx ligand, yielding a novel class of Hedgehog pathway 

inhibitors. 
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