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Abstract
We designed and synthesized a simple fluorescent probe, (E)-2-(2-(3,4,5-Trimethoxybenzylidene)hydrazinyl) benzothiazole
(probe), which could be applied to the detection of strongly acidic and alkaline pH in DMSO/water (1/4, v/v) system. It could
be used to quantitatively detect strong acid in the range of 2.60–3.53 with a pKa of 2.78. Meanwhile, it also showed an excellent
linear relationship between the fluorescence intensity and alkaline pH values over the range of 9.98–10.95 with a pKa of 9.32. The
probe exhibited excellent properties to pH with high selectivity and sensitivity. The mechanism studies showed that the H+

binding with the N atom of benzothiazole moiety and hydrazine moiety in acid solution while the deprotonation of N atom in
hydrazine group in basic environment. Importantly, the probe was successfully applied for imaging the strongly acidic and
alkaline in E.coil cells.
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Introduction

For all we know, the pH plays a crucial role in biological
systems. It is related with cell growth and division [1, 2], ion
transport [3], endocytosis [4] and muscle contraction [5].
Therefore, it is vital to keep a appropriate pH for the normal
cellular activities. For the human body, different part usually
have different pH values, such as cytosol (pH 6.0–7.45) [6],
saliva (pH 6.7–6.9) [7], lysosomes and endosomes (pH 4.5–
6.0) [8], gastric juice (pH 2.0–3.0) [9]. Some diseases like

cancer, stroke and Alzheimer’s disease are caused by abnor-
mal pH values [10, 11]. So we are eager to develop a simple
and accurate way to measure pH. In fact, there are many
methods have been applied to measure the intracellular pH
values such as acid-base indicator titration [12], pH-sensitive
microelectrodes [13], 31P nuclear magnetic resonance tech-
nique [14]. However, these methods were time-consuming,
destructive and easily interfered by environment factors [15].
Compared with these ways, fluorescent probes have attracted
many successful applied in fluorescence imaging, medical
diagnosis and other fields because its high sensitivity, good
selectivity, and real-time detection [16–18].

Up to now, lots of fluorescent probes have been reported
for pH, however, most of them are mainly for neutral pH (6–8)
and weak acid pH (4–6) [6, 19, 20]. Only a few probes are
designed for the extremely acid conditions (pH < 4) and ex-
tremely alkaline conditions (pH > 9) [21–24]. Although the
strong acid or alkaline environment is not conducive to the
survival of most organisms, some microorganisms such as
Helicobacter pylori, eosinophilic bacteria and basophilic bac-
teria prefer living in this environment [25–27]. And, mammals
also have very acidic physiological environments, such as
gastric juice, which abnormal pH value lead to gastric dys-
function and directly cause of stomach diseases [26, 28]. For
these reasons, it is necessary to develop a fluorescence sensor
to detect the strong acid and alkaline.
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The benzothiazole group possess good fluorescence prop-
erties owing to their large range of π-conjugated systems. And
it is always regarded as fluorophore and recognition moiety
due to it contains two heteroatoms (N and S) that can be
coordinated with metal ions [29, 30].Many fluorescent probes
based on benzothiazole have been reported in recent years.
Liu reported a fluorescent probe for Fe3+ based on 2-(2-
hydroxyphenyl)benzothiazole [31], Nguyen designed a
benzothiazole-based fluorescent probe for hypochlorous acid
[32]. Zhang synthesized a probe based on the iminocoumarin
benzothiazole for sensing hydrogen sulfide [33]. Shen de-
signed a simple fluorescent probe based on a benzothiazole
derivative that can been used to detect for copper and biothiols
[34]. In this paper, we designed a simple probe, (E)-
2 - (2- (3 ,4 ,5 -Tr imethoxybenzy l idene)hydraz iny l )
benzothiazole (probe), which was constructed via
benzothiazole and 3,4,5-trimethoxy benzene. The probe can
be used to detect the extreme acid and alkaline with high
sensitivity and good selectivity. The fluorescence intensity
showed an excellent linear relationship with pH value over
the range of 2.60–3.53 and 9.98–10.95. And the cells imaging
studies revealed that probe had a great potential to monitor pH
change in E. coli cells.

Experimental Section

Materials and Instrumentation

All reagents and solvents were commercially available
(Sinopharm Chemical Reagent Beijing Co., Ltd.). The sol-
vents and chemicals were analytical grade and used without
further purification unless for special needs. Distilled water
was used throughout the process of UV-vis and fluorescence
measurements.

1H NMR and 13C NMR experiments were taken on a
Bruker AVANCE-600 MHz and 150 MHz NMR spectrome-
ter, respectively. HRMS data were achieved with a Thermo
Scientific Q Exactive LC-MS/MS system. All pH was con-
trolled by a PHS-3C digital pH-meter (YouKe, China).
Absorption spectra were obtained by a UV-2450 spectropho-
tometer (Shimadzu, Japan). Fluorescence measurements were
recorded on a F-7000 fluorescence spectrophotometer

(Hitachi, Japan). Imaging in E. coli cells was conducted on a
ZEISS LSM 880 confocal laser scanning microscope.

Synthesis of (E)-2-(2-(3,4,5-Trimethoxybenzylidene)
Hydrazinyl) Benzothiazole (Probe)

2-hydrazinobenzothiazole (0.33 g, 30 mM) and 3,4,5-
trimethoxybenzaldehyde (0.40 g, 30 mM) were added into a
250 mL three-neck round bottom flask and dissolved
completely in anhydrous methanol (65.0 mL). Added 3–4
drops concentrated hydrochloric acid to the mixture and
stirred it at room temperature. After 2 h, added 2–3 drops
concentrated hydrochloric acid to the solution and kept stir-
ring it for 18 h. Then the resulting solution was heated to
reflux for 5 h. The reaction was monitored by TLC (V ethyl

acetate: V petroleum ether = 2: 1). After cooled downed to room
temperature, the solid was filtered off under reduced pressure
and washed with methanol for three times and dried in vacu-
um to afford probe (0.53 g, 76.8%, Scheme 1). The structure
of probe was characterized by 1H NMR and 13C NMR. 1H
NMR (DMSO-d6, 600 MHz, δ/ppm): 8.12 (s, 1H), 7.81 (d,
J = 7.6 Hz, 1H), 7.47 (d, J = 6.8 Hz, 1H), 7.34~7.31 (t, J =
7.5 Hz, 1H), 7.15~7.13 (t, J = 7.3 Hz, 1H), 7.06 (s, 2H), 3.85
(s, 6H), 3.71 (s, 3H), (Fig. S1). 13C NMR (DMSO-d6,
150 MHz, δ/ppm): 167.06, 153.67, 146.82, 139.77, 129.74,
127.75, 127.04, 123.12, 122.70, 117.09, 104.81, 60.61, 56.44,
49.05 (Fig. S2).

Sample Preparation and Spectroscopic Measurements

Dissolved the probe in DMSO as the stock solutions
(1.0 mM). We diluted the stock solution to 10.0 μM with
DMSO/water (1/4, V/V) for fluorescence and UV-vis mea-
surement. Absorption and fluorescence spectra were mea-
sured with 1.0-cm quartz cells. A series of ions solutions
(K+, Na+, Ca2+, Zn2+, Mg2+, Al3+, Co2+, Cr3+, Ni2+, Bi3+,
Cu2+, Hg2+, Fe2+, Fe3+, Pb2+ and Mn2+) for anti-interference
tests were prepared from the corresponding hydrochloride
salts. The solutions of common amino acids (Phe, Asp, Ala,
Leu, Lys, Val, Ser, Gly) prepared in redistilled water. The
excitation wavelength was set at 355 nm (slit: 5 nm /10 nm)
for the fluorescence measurements.
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Scheme 1 Synthetic routes of probe
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Fig. 1 a Absorption and b fluorescence spectra (λex = 355 nm, slit = 5/
10 nm) of 10.0μMprobe in DMSO/water (1/4,V/V) at different pH value
(from 7.40 to 1.68); c plot of the emission fluorescence intensity of probe
at 425 nm at various pH values. The inset showed the linear relationship
of fluorescence intensity at 425 nm and pH values from 2.60 to 3.53

Fig. 2 aUV-vis and b fluorescence spectra (λex = 355 nm, slit = 5/10 nm)
of 10.0 μM probe in DMSO/water (1/4, V/V) at different pH value (from
7.40 to 12.45); c plot of the emission fluorescence intensity of probe at
451 nm at various pH values. The inset showed the linear relationship of
fluorescence intensity at 451 nm and pH values from 9.98 to 10.95
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Bacteria Culture and Imaging

E. coli strains were inoculated into Luria-Bertani (LB)
culture medium (NaCl 10 g/L, Trptone 10 g/L and yeast
extract 5 g/L) and incubatednn at 37 °C in a table con-
centrator at 180 rpm for 15 h. Next, the bacteria were
equally divided into nine centrifuge tubes and collected
by centrifugation at 4300 rpm for 5 min. The sediment
was washed three times and resuspended with various pH
solutions (11.00, 10.60, 10.30, 9.00, 7.40, 5.50, 3.00,
2.50, 1.70), respectively. After 10 min, every tube was
added with probe to make the final concentration of probe
to be 20 μM and incubated in a table concentrator for 2 h
at 37 °C. Before imaging, the E. coli cells were washed
twice with distilled water.

Results and Discussion

Spectroscopic Properties of Probe

The UV-vis absorption spectra of 10.0 μM probe were
discussed in DMSO/water (1/4, V/V) at various pH
values. At neutral condition, probe exhibited a maximum
absorption at 341 nm (ε = 2.89 × 104), however, the ab-
sorption peak enhanced and blue-shifted to 336 nm (ε =
3.21 × 104) upon adding the environmental acidity from
pH 7.40 to 1.68 (Fig. 1a). When the alkalinity of solu-
tion increased from pH 7.40 to 12.45, the peak at
341 nm significantly decreased accompanied by the ap-
pearance of two new peaks centred at 265 nm and
394 nm (Fig. 2a).

Next, the fluorescence changes of probe (10 μM) in
different pH environment were studied. As seen from the
Fig. 1b, the probe fluorescence intensity at 451 nm in-
creased and blue-shifted to 425 nm with the lowering the
pH from 7.40 to 1.68. The fluorescence emission inten-
sity at 425 nm (F425 nm) versus pH showed BS^ shaped
calibration graph with a pKa of 2.78 (Fig. 1c). Besides,
there was a great linear relationship between the F425 nm

and pH values from 2.60 to 3.53 with the linear equation
F425 nm = −592.8*pH + 3353.8 (inset of Fig. 1c, R2 =
0.9833). With increasing the environmental basicity from
7.40 to 12.45, the fluorescence intensity at 451 nm (F451
nm) decreased remarkably (Fig. 2b). From the sigmoidal
plot of the F451 nm with pH value, a pKa value of 9.32
was calculated which implied the probe was sensitive
around this pH values (Fig. 2c). Concomitantly, the
F451 nm displayed a good linear correction with pH in
the range of 9.98–10.95 with the function of F451 nm =
−538.6*pH + 6339.9, R2 = 0.9733 (inset of Fig. 2c).
These linear curves make it easier to quantitative deter-
mination of pH over this pH range.

The Selectivity of Probe

Taking into account the intracellular environment was com-
plex, we evaluated the anti-interference capacity of 10.0 μM
probe to pH at pH 8.20, 7.40 and 2.75 by an anti-interference
test, respectively. The influence of various metal cations (K+,
Na+, Ca2+, Zn2+, Mg2+, Al3+, Co2+, Cr3+, Ni2+, Bi3+, Cu2+,
Hg2+, Fe2+, Fe3+, Pb2+ and Mn2+) and some common amino
acids (Phe, Asp, Ala, Leu, Lys, Val, Ser, Gly) on the fluores-
cence intensity of probe were shown in Fig. 3 and Fig. S3.
They all didn’t cause visible effect on the pH response of
probe. From the experimental results, we could conclude that

Fig. 3 Fluorescence changes of 10.0 μM probe in DMSO/water (1/4,
V/V) toward various metal ions and common amino acids (λex =
355 nm, slits = 5/10 nm). a pH 2.75, λem = 425 nm; b pH 8.20, λem =
451 nm. 1. Blank; 2. K+ (25 mM); 3. Na+ (25 mM);4. Ca2+ (5 mM); 5.
Zn2+; 6. Mg2+; 7. Al3+; 8. Co2+; 9. Cr2+; 10. Ni2+; 11. Bi3+; 12. Cu2+

(0.1 mM); 13. Hg2+; 14. Fe2+ (0.1 mM); 15. Fe3+ (0.05 mM); 16. Pb2+;
17. Mn2+; 18. Phe (5 μM); 19. Asp (5 μM); 20. Ala (5 μM); 21. Leu
(5 μM); 22. Lys (5 μM); 23. Val (5 μM); 24. Ser (5 μM); 25. Gly (5 μM);
other unlabeled ions: 0.2 mM
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probe had the ability to detect pH selectivity in complex in-
tracellular environment.

Photostability and Reversibility

The time courses of the fluorescence intensity of probe
(10.0 μM) at pH 1.68, 2.75, 10.51 and 13.04 were studied.
Figure S4 exhibited the reaction of probe to pH could be

finished within 5 min. And the fluorescence intensity kept
unchanged during 2 h, indicating probe had good
photostability and was appropriate for real-time monitoring
pH. The reversibility was another very vital character for fluo-
rescent probes. Thus, the reversibility experiment of probe
towards pH was carried out. The fluorescence intensities of
probe were recorded when the pH of solution was adjusted
back and forth between 7.40 and 12.45 four times. As shown

Fig. 4 a Partial 1H NMR spectra
of probe and probe + H+ in
DMSO-d6. b Partial 1H NMR
spectra of probe and probe + OH−

in DMSO-d6
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Fig. 6 Imaging alkalinity in E. coli cells of probe (20.0 μM). A: pH 7.40;
B: pH 9.0; C: pH 10.3; D: pH 10.6; E: pH 11.0. First column: blue channel
(410–500 nm, λex = 405 nm); second column: bright field; third column:
overlapped of blue channel and bright field. G: The relative fluorescence
intensity of E. coli cells incubated at different pH buffer

Fig. 5 Imaging acidity in E. coli cells with probe (20.0 μM). A: pH 7.4;
B: pH 5.5; C: pH 3.0; D: pH 2.50; E: pH 1.7. First column: blue channel
(410–500 nm, λex = 405 nm); second column: bright field; third column:
overlapped of blue channel and bright field. F: The relative fluorescence
intensity of E. coli cells incubated in different pH buffer
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in Fig. S5, the probe was fully reversible in basic circum-
stance, and the response and recovery times are rapid within
seconds. Therefore, the probe could detect the base in real
time.

Proposed Mechanism of the pH Response of Probe

We speculated that the fluorescence and absorption changes of
probe could owing to the intramolecular charge transfer (ICT)
mechanism from the benzothiazole (electron-donor) to the
methoxy benzene moiety (electron-acceptor). To further pro-
vide direct evidence for the sensing mechanism between the
probe and pH, 1H NMR experiment was conducted in d6-
DMSO (Fig. 4). In the presence of HCl, the chemical shifts
of the benzothiazole ring protons (H-1, H-2, H-3 and H-4)
were downfiled shift, which indicated that H+ have been bind-
ing with nitrogen atom of the benzothiazol. At the same time,
the protons of methoxy benzene moiety (H-6) and H-5
showed downfiled shift, which implied that the protonation
of hydrazine nitrogen atom. The reason why these protons
down-shifted was that the binding of H+ and N atom led to
the decrease in the charge density around these protons. At
the same time, the protonation of nitrogen atom led to a
decrease of the ability of benzothiazole giving electrons.
Upon the addition of NaOH, the chemical shifts of all pro-
tons were up-field shifted as shown in Fig. 4b, which in-
dicated that the deprotonation of N atom in hydrazine
group.

Fluorescence Imaging pH in E. coil Cells

In order to access the potential application of probe for pH
detecting in living sample, E. coil cells were employed to
image the pH change. To create acid and alkaline surround-
ings for bacteria, we used buffer with pH 11.0, 10.6, 10.3,
9.00, 7.40, 5.50, 3.00, 2.50 and 1.70, respectively, to incubate
E. coil. As seen from the Fig. 5, the E. coli cells exhibited
weak blue fluorescence (410–500 nm, λex = 405 nm) at
pH 7.40, but it enhanced gradually with reduction of the H+

concentration from 7.40 to 1.70. When the environmental al-
kaline changed from 7.40 to 11.00, the fluorescence in blue
channel enhanced obviously (Fig. 6). The variation of relative
fluorescence intensity in blue channel under different pH val-
ue were shown in Figs. 5f and 6g. These results were in agree-
ment with the changes of the fluorescence at λex = 405 nm
that showed in Fig. S6. Meanwhile, we affirmed that E. coli
cells could survive in such extremely acidic or alkaline cir-
cumstance, and the probe was suitable for monitoring such
alkaline and acidic extracellular pH changes.

Conclusion

In summary, we reported a simple probe that could be used to
detect the extreme acidic and alkaline. The probe displayed a
Bturn on^ fluorescence respond in acid solutions and had a
linearly relationship with pH value in the range of 2.60–3.53
with a pKa 2.78. However, it exhibited a Bturn off^ response to
basic at the λex = 355 nm and the linear range was 9.98–10.95.
The probe possesses excellent photostability, good selectivity
and cell membrane permeability. And the probe exhibited re-
versible in basic environment. The mechanism was verified to
protonation and deprotonation of N atom by the 1H NMR
spectra. Most importantly, the application of probe to image
pH in bacteria was realized successfully. Based on the great
properties of probe, we confirmed that the probe would be an
efficient tool for imaging pH distribution and change tracking.
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