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Abstract: Chiral iridium complex catalyzed a formal [4+2] cy-
cloaddition of biphenylene with disubstituted alkynes, which was
initiated by carbon–carbon bond cleavage. Axially chiral 9,10-di-
substituted phenanthrenes were enantiomerically obtained.
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In general, a carbon–carbon single bond is inert and intact
in organic reactions. However, carbon–carbon bond
cleavage in strained molecules with small ring systems,
such as cyclopropane and cyclobutane, could be possible.1

Transition-metal complexes facilitate the bond cleavage,
and catalytic and unique synthetic transformations have
been reported, which were initiated by carbon–carbon
bond cleavage (they are named carbon–carbon bond acti-
vation or functionalization).2 Biphenylene, namely diben-
zocyclobutadiene, which has a severely strained 4-
membered ring, underwent carbon–carbon bond cleav-
age: the reaction of biphenylene with transition-metal
complexes,3 including Ni,4 Ir,5 Rh,6 Co,7 Pt,8 Fe,9 and Pd
ones,10 gave dibenzometallacyclopentadienes. However,
it was not utilized in the catalytic organic syntheses until
Jones and a co-worker reported a Rh-catalyzed reaction of
biphenylene with alkynes.11

Here we assumed that, if the formal [4+2] cycloaddition
of biphenylene with a monoalkyne with ortho-substituted
aryl group (R1) on its terminus proceeds, an axial chirality
is generated in the substituted phenanthrene as a cycload-
duct (Scheme 1).

We chose 1-(3-methoxyprop-1-ynyl)-2-methylbenzene
(1a) as a model alkyne and examined the reaction with bi-
phenylene using chiral catalysts, which were prepared in
situ from [RhCl(cod)]2 or [IrCl(cod)]2 and chiral diphos-
phine ligands (Table 1).12 When BINAP was used, the re-
action proceeded sluggishly but the desired substituted
phenanthrene 2a was obtained in low yield, and the gen-
eration of axial chirality in the product was ascertained by
the HPLC analysis using a chiral column. However, its
enantiomeric excess was below 5% for both the Rh- and
Ir-catalyzed reactions (entries 1 and 2). 1,2-Bis(2,5-di-
methylphospholano)benzene (Me-DUPHOS) was a better

ligand; in particular, in the Ir-catalyzed reaction, alkyne
1a was completely consumed within two hours, and mod-
erate yield and enantiomeric excess were achieved (en-
tries 3 and 4). 1,2-Bis(2,5-dimethylphospholano)ethane
(Me-BPE) further improved both yield and enantioselec-
tivity (entry 6), but iridium–1,2-bis(2,5-diphenylphos-
pholano)ethane (Ir–Ph-BPE) catalyst showed almost no
catalytic activity. In the present enantioselective cycload-
dition, Ir complexes generally operated as more efficient
chiral catalysts than Rh ones, and we used Ir–Me-BPE
catalyst for further investigation.

We next examined various alkynes under the best reaction
conditions, and the results are summarized in Table 2.13

When a methyl group was introduced into the alkyne ter-
minus in place of methoxymethyl one, enantiomeric ex-
cess of corresponding product 2b was significantly
increased (entry 1). The substituents on the ortho position
of the aryl group drastically influenced the enantioselec-
tivity: in the case of the 2-methoxyphenyl group, the enan-
tiomeric excess of cycloadduct 2c was miserable (entry
2);14 in contrast, in the case of 2-trifluoromethylphenyl
group, the enantiomeric excess of cycloadduct 2d exceed-
ed 90% (entry 3).15 From alkyne 1e with a bulkier siloxy
group, corresponding cycloadduct 2e with slightly lower
enantiomeric excess was obtained (entry 4). These results

Scheme 1 Strategy for the construction of an axial chirality initiated
by carbon–carbon bond activation of biphenylene
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mean that the use of polarized alkynes, which have an
electron-donating group at one side and an electron-with-
drawing one at another side, is very important for high
enantioselectivity. Actually, alkyne 1f with methyl and 2-
trifluoromethylphenyl groups realized the best enantiose-
lectivity (entry 5).16 Diaryl-substituted alkynes also react-
ed with biphenylene and corresponding chiral 9,10-
diarylphenanthrenes 2g and 2h were obtained (entries 6
and 7). Also in these cases, alkyne 1g with the electron-
donating methoxy group on the benzene ring surely gave
better results than the electron-withdrawing methoxycar-
bonyl group.

The methoxy group of cycloadduct 2g was transformed
into a hydroxy, and the absolute configuration was ascer-
tained as its ferrocenyl ester (Figure 1).

In summary, we developed an Ir-catalyzed enantioselec-
tive formal [4+2] cycloaddition of biphenylene and
alkynes, which gave 9,10-disubstituted phenanthrenes
with an axial chirality. The two substituents on the
alkynes played a pivotal role for asymmetric induction.
We have already published Ir-catalyzed enantioselective
[2+2+2] cycloaddition of alkynes, which induced axially
chirality(ies) along with benzannulation.17 Therefore, the
present reaction is another new approach to the construc-
tion of axial chirality, which is initiated by carbon–carbon
bond cleavage.

Table 1 Screening of Reaction Conditions Using Various Chiral Rh 
or Ir Complexesa

Entry M Ligandb Time (h) Yield (%)ee (%)

1 Rh BINAP 24 23 <5

2 Ir BINAP 10 31 <5

3 Rh Me-DUPHOS 24 45 37

4 Ir Me-DUPHOS 2 63 58

5 Rh Me-BPE 24 57 47

6 Ir Me-BPE 2 65 65

7 Ir Ph-BPE 10 N.R. –

a Reaction conditions: biphenylene (0.12 mmol), alkyne (0.10 mmol), 
[MCl(cod)]2 (0.010 mmol), ligand (0.020 mmol), xylene (1.0 mL).
b The S- or S,S-isomer was used.
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Figure 1 The ORTEP diagram of the ferrocenyl ester derived from
cycloadduct 2g
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