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Iridium-Catalyzed Enantioselective Formal [4+2] Cycloaddition of
Biphenylene and Alkynesfor the Construction of Axial Chirality
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Abstract: Chiral iridium complex catalyzed a formal [4+2] cy-
cloaddition of biphenylene with disubstituted alkynes, which was
initiated by carbon—carbon bond cleavage. Axially chiral 9,10-di-
substituted phenanthrenes were enantiomerically obtained.
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In genera, acarbon—carbon single bond isinert and intact
in organic reactions. However, carbon—carbon bond
cleavage in strained molecules with small ring systems,
such as cyclopropane and cyclobutane, could be possible.!
Transition-metal complexes facilitate the bond cleavage,
and catalytic and unique synthetic transformations have
been reported, which were initiated by carbon—carbon
bond cleavage (they are named carbon—carbon bond acti-
vation or functionalization).? Biphenylene, namely diben-
zocyclobutadiene, which has a severely strained 4-
membered ring, underwent carbon—carbon bond cleav-
age: the reaction of biphenylene with transition-metal
complexes,® including Ni,* Ir,> Rh,® Co,” Pt,2 Fe,® and Pd
ones,'° gave dibenzometallacyclopentadienes. However,
it was not utilized in the catalytic organic syntheses until
Jones and a co-worker reported a Rh-catalyzed reaction of
biphenylene with alkynes.**

Here we assumed that, if the formal [4+2] cycloaddition
of biphenylene with a monoalkyne with ortho-substituted
aryl group (RY) on itsterminus proceeds, an axial chirality
is generated in the substituted phenanthrene as a cycload-
duct (Scheme 1).

We chose 1-(3-methoxyprop-1-ynyl)-2-methylbenzene
(1a) asamodel alkyne and examined the reaction with bi-
phenylene using chiral catalysts, which were prepared in
situ from [RhCl(cod)], or [IrCl(cod)], and chiral diphos-
phine ligands (Table 1).22 When BINAP was used, the re-
action proceeded sluggishly but the desired substituted
phenanthrene 2a was obtained in low yield, and the gen-
eration of axial chirality in the product was ascertained by
the HPLC analysis using a chiral column. However, its
enantiomeric excess was below 5% for both the Rh- and
Ir-catalyzed reactions (entries 1 and 2). 1,2-Bis(2,5-di-
methyl phospholano)benzene (Me-DUPHOS) was a better
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ligand; in particular, in the Ir-catalyzed reaction, alkyne
1a was completely consumed within two hours, and mod-
erate yield and enantiomeric excess were achieved (en-
tries 3 and 4). 1,2-Bis(2,5-dimethylphospholano)ethane
(Me-BPE) further improved both yield and enantiosel ec-
tivity (entry 6), but iridium-1,2-bis(2,5-diphenylphos-
pholano)ethane (Ir-Ph-BPE) catalyst showed almost no
catalytic activity. In the present enantiosel ective cycload-
dition, Ir complexes generally operated as more efficient
chiral catalysts than Rh ones, and we used Ir-Me-BPE
catalyst for further investigation.

We next examined various alkynes under the best reaction
conditions, and the results are summarized in Table 2.1
When a methyl group was introduced into the alkyne ter-
minus in place of methoxymethyl one, enantiomeric ex-
cess of corresponding product 2b was significantly
increased (entry 1). The substituents on the ortho position
of the aryl group drastically influenced the enantioselec-
tivity: in the case of the 2-methoxyphenyl group, the enan-
tiomeric excess of cycloadduct 2c was miserable (entry
2);% in contrast, in the case of 2-trifluoromethylphenyl
group, the enantiomeric excess of cycloadduct 2d exceed-
ed 90% (entry 3).%° From akyne 1e with a bulkier siloxy
group, corresponding cycloadduct 2e with dslightly lower
enantiomeric excess was obtained (entry 4). These results
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Tablel Screeningof Reaction ConditionsUsing VariousChiral Rh
[MCI(cod)]z + 2 Ligand

or Ir Complexes?
(10 mol%)

xylene 100 °C OO

Me

OMe

la 2a
Entry M LiganadP® Time (h) Yield (%)ee (%)
1 Rh BINAP 24 23 <5

2 Ir BINAP 10 31 <5

3 Rh Me-DUPHOS 24 45 37

4 Ir Me-DUPHOS 2 63 58

5 Rh Me-BPE 24 57 47

6 Ir Me-BPE 2 65 65

7 Ir Ph-BPE 10 N.R. -

aReaction conditions:. biphenylene (0.12 mmol), alkyne (0.10 mmol),
[MClI(cod)], (0.010 mmoal), ligand (0.020 mmol), xylene (1.0 mL).
bTheS or SSisomer was used.

mean that the use of polarized alkynes, which have an
electron-donating group at one side and an el ectron-with-
drawing one at another side, is very important for high
enantiosel ectivity. Actualy, alkyne 1f with methyl and 2-
trifluoromethylphenyl groups realized the best enantiose-
lectivity (entry 5).1¢ Diaryl-substituted alkynes also react-
ed with biphenylene and corresponding chiral 9,10-
diarylphenanthrenes 2g and 2h were obtained (entries 6
and 7). Also in these cases, alkyne 1g with the electron-
donating methoxy group on the benzene ring surely gave
better results than the el ectron-withdrawing methoxycar-
bonyl group.

The methoxy group of cycloadduct 2g was transformed
into a hydroxy, and the absolute configuration was ascer-
tained asits ferrocenyl ester (Figure 1).

In summary, we developed an Ir-catalyzed enantiosel ec-
tive formal [4+2] cycloaddition of biphenylene and
alkynes, which gave 9,10-disubstituted phenanthrenes
with an axia chirality. The two substituents on the
alkynes played a pivotal role for asymmetric induction.
We have aready published Ir-catalyzed enantioselective
[2+2+2] cycloaddition of alkynes, which induced axially
chirality(ies) along with benzannulation.!” Therefore, the
present reaction is another new approach to the construc-
tion of axial chirality, which isinitiated by carbon—carbon
bond cleavage.

Table2 Ir-Catalyzed Formal [4+2] Cycloaddition of Biphenylene with Various Alkynes?
Entry  Alkyne Time(h) Product Yield (%) ee (%)
I Me
1 1b Q%Me 2 2b Me 77 76
. OOO
I OMe
2 1c — 18 2c 54 9
OMe OMe
OMe OO
L O CF3
3 1d — 11 2d 71 92
OMe OMe
)
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Table2 Ir-Catalyzed Formal [4+2] Cycloaddition of Biphenylene with Various Alkynes? (continued)

Entry  Alkyne Time(h) Product

Yield (%) ee (%)

OTBS

CF3

e w Q=
C

Fs

c o = Oen
C

2e

2f

29

2h

CF3
78 85
™
74 95

O 55 89
I

W, s
CO,Et

aReaction conditions: [1rCl(cod),] (0.010 mmoal), (S,S)-Me-BPE (0.020 mmol), biphenylene (0.12 mmol), alkyne (0.10 mmol), xylene (1.0 mL).

b Alkynes 1 were not completely consumed.

Fc = ferrocenyl

Figurel The ORTEP diagram of the ferrocenyl ester derived from
cycloadduct 2g
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In the presence of [IrCl(cod)], without diphosphine ligand,
alkyne 1a was consumed within 2 h, but theyield of 2a was
low (28%).

General Experimental Procedure

[IrCl(cod)], (6.7 mg, 0.010 mmol) was placed in a30 mL
two-neck flask under an argon atmosphere, and a xylene
solution (0.4 mL) of (S§S-Me-BPE (5.2 mg, 0.020 mmol)
was added. After the mixture was stirred for 5min atr.t., a
xylene solution (0.6 mL) of biphenylene (18.3 mg, 0.12
mmol) and an alkyne (0.10 mmol) was added. The mixture
wasstirred at 100 °C, then the solvent was evaporated under
reduced pressure, and the resulting crude products were
purified by TLC to afford a pure cycloadduct.

After being stirred for 4 h, cycloadduct 2c was obtained in
higher ee of 27% ee. Actually, gradual racemization of 2c
was ascertained at 100 °C.

9-M ethoxymethyl-10-[(2-trifluor omethyl)phen-
yl]phenanthrene (2d)

White solid; mp 151-152 °C. IR (CH,Cl,): 1315, 1130,
1110, 1097 cmt. *H NMR (500 MHz, CDCl,): & = 3.25 (s,
3H),4.22(d, J=11.0 Hz, 1 H), 4.89 (d, J = 11.0 Hz, 1 H),
7.13(d, J=8.0Hz, 1 H), 7.40-7.44 (m, 2 H), 7.60-7.72 (m,
5H),7.88 (d, J=7.5Hz, 1 H), 8.28-8.31 (m, 1 H), 8.73-
8.78 (m, 2 H). 3C NMR (100 MHz, CDCl,): § = 58.2, 70.4,
122.4,122.8, 125.2, 126.1, 126.2, 126.4, 126.7, 126.8,
127.1, 128.0, 128.1, 129.7, 130.0, 130.2, 130.3, 130.6,
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(16)

(17)

130.7, 131.6, 132.7, 135.6, 138.0. Anal. Calcd for
C,3H4;,F;0: C, 75.40; H, 4.68. Found: C, 75.47; H, 4.58.
HRMS-FAB (positive): m/z calcd for C,3H,,F;0: 366.1232
[M]*; found: 366.1198 [M]*; [0] % 32.0 (c 1.00, CHCl,,
99% ee after recrystallization). The ee was determined by
chiral HPLC analysis using a chiral column (Daicel
Chiralpak 1A-H: 4 x 250 mm, 254 nm UV detector, r.t.,
eluent: 0.5% 2-PrOH in hexane, flow rate: 0.5 mL/min, t; =
20 min for mgjor isomer and 23 min for minor isomer).
9-M ethyl-10-[(2-trifluor omethyl)phenyl]phenanthrene
(26)

White solid; mp 109-111 °C. IR (CH,Cl,): 1315 cm™. *H
NMR (400 MHz, CDCl,): 6 =2.37(s,3H), 7.09 (d, J =84
Hz,1H),7.25(d,J=2.4Hz, 1H), 7.38-7.43 (m, 1 H), 7.55—
7.73(m,5H), 7.89 (d, J = 8.4 Hz, 1 H), 8.13-8.16 (m, 1 H),
8.72(d,J=8.4Hz, 1H), 8.77-8.80 (m, 1 H). ®*C NMR (100
MHz, CDCl,): 8 = 17.7,122.3,122.9, 125.1, 125.3, 125.7,
126.2, 126.3, 126.3, 126.5, 126.8, 127.2, 127.7, 129.1,
130.2,130.7, 131.6, 131.9, 132.2, 132.4, 133.8, 139.5. Andl.
Calcd for C,,H,5F5: C, 78.56; H, 4.50. Found: C, 78.50; H,
4.40. HRMS-FAB (positive): m/z calcd for C,,H 5F3:
336.1126 [M]*; found: 336.1105 [M]*; [a]p?® —28.1 (c 1.00,
toluene, 98% ee after recrystallization). The ee was
determined by chiral HPLC analysis using a chiral column
(Daicel Chiralcel OD-H: 4 x 250 mm, 254 nm UV detector,
r.t., eluent: 1% 2-PrOH in hexane, flow rate: 1.0 mL/min,
tz = 8 min for minor isomer and 14 min for major isomer).
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