3-Formylchromones in Guareschi Synthesis of 5-(2-Hydroxybenzoyl)-2-pyridones

Sergey V. Ryabukhin,^{a,b} Andrey S. Plaskon,^b Dmitriy M. Volochnyuk,*^a Andrey A. Tolmachev^b

^a 'Enamine Ltd.', 23 A. Matrosova st., 01103 Kiev, Ukraine

^b National Taras Shevchenko University, 62 Volodymyrska st., Kyiv-33, 01033, Ukraine Fax +380(44)5373253; E-mail: dov@fosfor.kiev.ua

Received 6 May 2004

Abstract: A set of 5-(2-hydroxybenzoyl)-pyrid-2-ones, which are analogous to cardiotonic drugs such as milrinone, has been prepared in high yield by recyclization of 3-formylchromones with acetic acid amides having at the α -position an electron-withdrawing group. The best reaction conditions were found to be heating in DMF in the presence of Me₃SiCl as a promoter and water scavenger.

Key words: 3-formylchromones, cyanoacetamides, 2-pyridones, recyclization, chlorotrimethylsilane, parallel synthesis

2-Pyridones play an important theoretical and practical role in heterocyclic chemistry.¹ Recently, interest in these compounds was reignited by the discovery of a new class of non-glycosidic cardiotonic agents, the cyclic adenosine 3',5'-monophosphate (cAMP) specific phosphodiesterase (PDEIII) inhibitors, which have been used for the treatment of congestive heart failure. All these agents are characterized by the presence of the 2-pyridone nucleus, prototypes being amrinone² and particularly milrinone.³ Searches for analogues of milrinone have revealed that 2-oxo-3-pyridinecarbonitriles (1) having a carbonyl moiety at the 5-position also exhibited a significant ionotropic activity (Figure 1)⁴

The convenient method for synthesis of 2-oxo-3-pyridinecarbonitriles having a carbonyl moiety at the 5-position is the Guareschi reaction of cyanoacetamide as 1,3-CCN-binucleophile with different 1,3-CCC-bielectrophiles hav-

Figure 1 The structures of the cAMP PDE III inhibitors.

ing a carbonyl function at the *meso*-position, such as 2dimethylaminomethylene-1,3-diones (enamine diones).⁵ The widely used latent 1,3-dialdehydes, having at the *meso*-position a masked 2-hydroxybenzoyl fragment, are 3-formylchromones.⁶ There are literature data on the reaction of 3-formylchromones with cyanoacetamide affording 5-(2-hydroxybenzoyl)-2-oxo-1,2-dihydro-pyridine-3carbonitriles; however the reaction is accompanied with side reactions.⁷ Herein, we wish to report new reaction conditions, under which only the targeted products form in nearly quantitative yield. This makes the reaction a very attractive tool for designing libraries of compounds via semi-automated parallel synthesis.

3-Formylchromones (1) react with cyanoacetamide (2) in DMF solution at 100 $^{\circ}$ in the presence of Me₃SiCl⁸ yielding 5-(2-hydroxybenzoyl)-2-oxo-1,2-dihydropyridine-3carbonitriles (6) as a single product of recyclization (Scheme 1).⁹ This reaction is a general one; not only does

Scheme 1

SYNLETT 2004, No. 13, pp 2287–2290 Advanced online publication: 24.09.2004 DOI: 10.1055/s-2004-832852; Art ID: D11604ST © Georg Thieme Verlag Stuttgart · New York

Scheme 2

cyanoacetamide produce favorable results, but primary and secondary amides of acetic acid having an π -electronwithdrawing group at the α -position **3–5** do as well, affording the corresponding pyridones **6–9** (Scheme 1, Table 1). However, it should be noted that the use of substrates bearing an active acetyl group, such as 3-oxobutanamide (**5**), complicates the reaction and lowers the yield of targeted product **9**.

The structure of novel products was confirmed by ¹H NMR,¹⁰ ¹³C NMR,¹¹ IR spectroscopy,¹² mass spectrometry,¹³ and elemental analysis.

We suggest that Me₃SiCl plays several roles in the reaction. One can imagine that the reaction occurs by the following mechanism. The first stage is the aldol condensation of the amide methylene group with the aldehyde function of the the chromone leading to open-chain products 12.^{6f,7} Subsequently, 12 could undergo either recyclization to provide targeted pyridone 6 or cleavage of the chromone ring by water, formed in the first stage, to afford ketoaldehyde 13 that then leads to side reactions. The latter can undergo 6-*exo-dig* cyclization of the enol with the nitrile function, finally leading to formation of

by-product iminopyrone **11** and its recyclization product, pyridone **10**.^{7,14} On the other hand, under our condition, Me₃SiCl acts as a water scavenger, thus preventing the formation of ketoaldehyde **13**. Even if ketoaldehyde **13** forms in the reaction mixture, it is silylated by excess of Me₃SiCl to form the O-silylated intermediate **14**. This intermediate is unreactive with respect to the nitrile group, but is able to form either chromone **12** or the targeted pyridone **6** (Scheme 2). Finally, any water present in the reaction mixture would react with Me₃SiCl to release HCl, which catalyzes the reaction.

Our attempts to extend the procedure to primary enamines such as β -aminocrotonitrile and alkyl β -crotonates failed. In this case, due to harsh reaction conditions, destruction of starting enamines occurs and the targeted pyridines were detected only in trace amounts. For the same reason we have not been able to developed the preparative procedure for interaction of 3-formylchromones with cyanoacetic acid thioamide and its derivatives.

Table 1 Yields and Melting Points of 2-Pyridones Obtained^a

		•		•				
Chromone	Amide	Product	R	R′	EWG	Yield (%) ^b	Mp (°C, solvent) ^c	[M + 1] ^d
1a	2	6a	Н	Н	CN	75	263–265 ^e (MeCN)	241
1c	2	6c	F	Н	CN	73	265–266 (MeCN)	259
1d	2	6d	Cl	Н	CN	84	269-270 (MeCN)	275
1e	2	6e	OMe	Н	CN	70	262-263 (MeCN)	271
1d	3a	7da	Cl	CH ₂ Ph	CN	85	235-236 (MeCN)	365
1b	3b	7bb	Me	CH(CH ₃) ₂	CN	72	181-182 (MeOH)	297
1d	3c	7dc	Cl	CH ₂ CH ₂ OMe	CN	70	182-183 (MeOH)	333
1e	3d	7ed	OMe	\mathbf{M}	CN	84	205-206 (MeOH)	353
1d	3e	7de	Cl		CN	75	227-228 (MeCN)	315

Chromone	Amide	Product	R	R′	EWG	Yield (%) ^b	Mp (°C, solvent) ^c	[M + 1] ^d
1d	3f	7df	Cl	Ph	CN	90	183-184 (MeCN)	351
1e	3f	7ef	OMe	Ph	CN	84	178–179 (MeOH)	347
1b	3g	7bg	Me	CF3	CN	80	178–179 (MeOH)	399
1d	3h	7dh	Cl		CN	78	206-207 (MeCN)	352
1a	3i	7ai	Н	χ^{s}	CN	87	202–203 (MeCN)	324
1d	3ј	7dj	Cl	$\sim \sim $	CN	72	220-221 (MeOH)	359
1b	4 a	8ba	Me	CH ₂ Ph	CONHCH ₂ Ph	81	159–160 (MeOH)	453
1d	4b	8db	Cl	Ph	CONHPh	88	232-233 (MeCN)	445
1b	4 c	8bc	Me	NO ₂		86	259–260 (MeCN)	515
1d	4d	8dd	Cl	Me	Ne Ne	90	228–229 (MeCN)	473
1c	4e	8ce	F	$ \bowtie $	Å.	78	155–156 (MeOH)	441
1c	4f	8cf	F	Me		73	166–167 (MeOH)	417
1b	4g	8bg	Me	OMe	Ů N OMe	79	140-141 (MeOH)	541
1e	5a	9ea	OMe	Н	COMe	62	189–190 (MeOH)	288
1e	5b	9eb	OMe	Me	COMe	68	201-202 (MeOH)	302

 Table 1
 Yields and Melting Points of 2-Pyridones Obtained^a (continued)

 a Satisfactory microanalysis obtained C \pm 0.33; H \pm 0.45; N \pm 0.25.

^b Yields refer to pure isolated product.

^c Melting points are uncorrected.

^d APSI MS, Agilent 1100\DAD\MSD VL G1965a instrument.

e Lit. 266-268 °C (dec.).7a

Acknowledgment

The authors acknowledge Turov A. V., Alekseev S. A. (Department of Chemistry of Kyiv National Taras Shevchenko University) and Mazepa A. V. (Bogatsky Physico-Chemical Institute, National Academy of Sciences of Ukraine, Department Molecular Structure) for spectral measurement.

References

 (a) Scriven, E. F. V. Pyridines and their Benzo Derivatives:
 (ii) Reactivity at Ring Atoms, In Comprehensive Heterocyclic Chemistry, Vol. 2; Katritzky, A. R.; Rees, C. W., Eds.; Pergamon Press Ltd.: Oxford, **1984**, 165. (b) Uff, B. C. Pyridines and their Benzo Derivatives: (iii) Reactivity of Substituents, In Comprehensive Heterocyclic Chemistry, Vol. 2; Katritzky, A. R.; Rees, C. W., Eds.; Pergamon Press Ltd.: Oxford, **1984**, 315.

- (2) Farah, A. E.; Alousi, A. A. Life Sci. 1978, 22, 1139.
- (3) Alousi, A. A.; Canter, J. M.; Monterano, M. J.; Fort, D. J.; Ferrari, R. A. J. Cardiovasc. Pharmacol. **1983**, *5*, 792.
- (4) (a) Fossa, P.; Boggia, R.; Presti, E. L.; Dorigo, P.; Floreani, M. *Farmaco* 1997, *52*, 523. (b) Mosti, L.; Schenone, P.; Del Mar Mahiques, M.; Dorigo, P.; Fracarollo, D.; Santostasi, G.; D'Amico, M.; Falciani, M.; Lampa, E. *Farmaco* 1994, *49*, 559. (c) Dorigo, P.; Gaion, R. M.; Belluco, P.; Fraccarollo, D.; Maragno, I.; Bombieri, G.; Benetollo, F.; Mosti, L.; Orsisns, F. *J. Med. Chem.* 1993, *36*, 2475.
- (5) (a) Abu Shanab, F. A.; Redhouse, A. D.; Thompson, J. B.; Wacefield, B. J. *Synthesis* **1995**, 557. (b) Mosti, L.; Schenone, P.; Menozzi, G. *J. Heterocycl. Chem.* **1985**, 22, 1503.

Synlett 2004, No. 13, 2287-2290 © Thieme Stuttgart · New York

- (6) For related cyclization reaction of 3-formylchromones, see: (a) Jones, W. D.; Albrecht, W. L. J. Org. Chem. 1976, 41, 706. (b) The cyclization of 3-formylchromones with amidines and 5-aminopyrazole afforded 5-(2hydroxybenzoyl)-pyrimidines. See: Löwe, W. Synthesis 1976, 274. (c) See also: Petersen, U.; Heitzer, H. Liebigs Ann. Chem. 1976, 1663. (d) See further: Quiroga, J.; Mejia, D.; Insuasty, B.; Abonita, R.; Nogueras, M.; Sanches, A.; Cobo, J.; Low, J. N. J. Heterocycl. Chem. 2002, 35, 51. (e) The cyclization of 3-formylchromones with aminoheterocycles afforded fused β -(2-hydroxybenzoyl)pyridines. See: Haas, G.; Stanton, J. L.; von Srerecher, A.; Wenk, P. J. Heterocycl. Chem. 1981, 18, 607. (f) With hydrazines: Eiden, F.; Haverland, H. Arch. Pharm. (Weinheim, Ger.) 1968, 301, 819. (g) See also: Ghosh, C. K.; Mukhopadhyay, K. K. J. Indian Chem. Soc. 1978, 55, 386. (h) With NH₂OH·HCl: Hsung, R. P.; Zificsak, C. A.; Wei, L.-L.; Zehnder, L. P.; Park, F.; Kim, M.; Tran, T. T. J. Org. Chem. 1999, 64, 8736. (i) With o-phenylenediamine: Ghosh, C. K.; Khan, S. Synthesis 1980, 701. (j) For conversion into pyrroles and thiofenes: Fitton, A. O.; Frost, J. R.; Suschitzky, H.; Houghton, P. G. Synthesis 1977, 133. (k) For conversation into 4-(2'-hydroxybenzoyl)salicylic esters see: Langer, P.; Holtz, E. Synlett 2003, 402.
- (7) (a) Nohara, A.; Ishiguro, T.; Sanno, Y. *Tetrahedron Lett.* 1974, 1183. (b) Hishmat, O. H.; El-Naem, Sh. I.; Magd-El-Din, A. A.; Fawzy, N. M.; Abd, E. I.-AalAS. *Egypt. J. Chem.* 2000, 43, 87.
- (8) For using Me₃SiCl as condensation agent see:
 (a) Ryabykhin, S. V.; Plaskon, A. S.; Tverdokhlebov, A. V.; Tolmachev, A. A. Synth. Commun. 2004, 34, 1483.
 (b) Heaney, H.; Papageorgeogu, G.; Wilkins, R. F. Tetrahedron 1997, 53, 2941. (c) For using Me₃SiI as condensation agent see: Sabitha, G.; Reddy, G. S. K. K.; Reddy, K. B.; Yadav, J. S. Synthesis 2004, 263. (d) Sabitha, G.; Reddy, G. S. K. K.; Reddy, C. S.; Yadav, J. S. Synlett 2003, 858. (e) Sabitha, G.; Reddy, G. S. K. K.; Reddy, C. S.; Yadav, J. S. Tetrahedron Lett. 2003, 44, 4129.
- (9) General Procedure: Amide 2–5 or 12 (2 mmol) and appropriate chromone 1 (2 mmol) were placed in a 10 mL flask and dissolved in DMF (5 mL). Chlorotrimethylsilane (10 mmol) was added dropwise to the solution. The flask was thoroughly sealed with a rubber stopper and heated on a water-bath for 10 h. After cooling the flask was opened (Caution! Excessive pressure inside!) and the reaction mixture was poured into H₂O (25 mL). The precipitate formed was filtered and washed with small amount of *i*-PrOH and than with MeOH. Recrystallization from an appropriate solvent yielded targeted compounds.
- (10) Typical ¹H MNR data (Varian Mercury-400 spectrometer) of pyridones obtained: Compound 6a: ¹H NMR (400 MHz, DMSO- d_6): $\delta = 6.91-6.99 (2 \text{ H}, \text{ m}, \text{CH}), 7.34-7.41 (2 \text{ H}, \text{ m}, \text{CH})$ CH), 8.05 (1 H, d, ${}^{4}J_{HH} = 2.8$ Hz, 4-H_{Pv}), 8.31 (1 H, d, ${}^{4}J_{\rm HH} = 2.8$ Hz, 6-H_{Pv}), 10.28 (1 H, s, NH), 13.11 (1 H, br s, OH). Compound **7bb**: ¹H NMR (400 MHz, DMSO- d_6): $\delta = 1.42 \ [6 \text{ H}, \text{ d}, {}^{3}J_{\text{HH}} = 7.6 \text{ Hz}, (\text{CH}_{3})_{2}\text{CH}], 2.30 \ (3 \text{ H}, \text{ s},$ CH₃), 5.09 [1 H, hep, ${}^{3}J_{HH} = 7.6$ Hz, (CH₃)₂CH], 6.86 (1 H, d, ³*J*_{HH} = 8.4 Hz, CH), 7.16–7.20 (2 H, m, CH), 8.19 (1 H, d, ${}^{4}J_{\rm HH} = 2.4$ Hz, 4-H_{Py}), 8.35 (1 H, d, ${}^{4}J_{\rm HH} = 2.4$ Hz, 6-H_{Py}), 10.08 (1 H, s, OH). Compound **7ef**: ¹H NMR (400 MHz, DMSO- d_6): $\delta = 3.77 (3 \text{ H}, \text{ s}, \text{CH}_3), 6.90-6.99 (3 \text{ H}, \text{ m}, \text{CH}),$ 7.50–7.60 (5 H, m, CH), 8.27 (1 H, d, ${}^{4}J_{HH} = 2.4$ Hz, 4-H_{Py}), 8.42 (1 H, d, ${}^{4}J_{HH} = 2.4$ Hz, 6-H_{Py}), 9.89 (1 H, s, OH). Compound **8ba**: ¹H NMR (400 MHz, DMSO- d_6): $\delta = 2.28$ $(3 \text{ H}, \text{ s}, \text{CH}_3), 4.52 (2 \text{ H}, \text{d}, {}^{3}J_{\text{HH}} = 5.6 \text{ Hz}, \text{CH}_2), 5.32 (2 \text{ H},$ s, CH₂), 6.87 (1 H, d, ${}^{3}J_{HH} = 8.4$ Hz, CH), 7.15 (1 H, s, CH), 7.19–7.21 (2 H, m, CH), 7.25–7.38 (7 H, m, CH), 7.39 (2 H,

- d, ${}^{3}J_{HH} = 7.6$ Hz, CH), 8.66 (1 H, ${}^{4}J_{HH} = 2.0$ Hz, 4-H_{Py}), 8.72 (1 H, d, ${}^{4}J_{HH} = 2.0$ Hz, 6-H_{Py}), 9.80 (1 H, t, ${}^{4}J_{HH} = 5.6$ Hz, 6-H_{Py}), 10.18 (1 H, s, OH). Compound **9ea**: ¹H NMR (400 MHz, DMSO- d_{6}): $\delta = 2.59$ (3 H, s, COCH₃), 3.74 (3 H, s, OCH₃), 6.84 (1 H, d, ${}^{4}J_{HH} = 2.7$ Hz, CH), 6.89 (1 H, d, ${}^{3}J_{HH} = 9.0$ Hz, CH), 6.96 (1 H, dd, ${}^{3}J_{HH} = 9.0$ Hz, CH), 6.96 (1 H, dd, ${}^{3}J_{HH} = 9.0$ Hz, CH), 8.00 (1 H, d, ${}^{4}J_{HH} = 3.0$ Hz, 4-H_{Py}), 8.39 (1 H, d, ${}^{4}J_{HH} = 3.0$ Hz, 6-H_{Py}), 9.76 (1 H, s, OH), 12.55 (1 H, br s, NH). Compound **9eb**: ¹H NMR (400 MHz, DMSO- d_{6}): $\delta = 2.57$ (3 H, s, COCH₃), 3.63 (3 H, s, NCH₃), 3.74 (3 H, s, OCH₃), 6.84 (1 H, d, ${}^{4}J_{HH} = 2.7$ Hz, CH), 6.89 (1 H, d, ${}^{3}J_{HH} = 9.0$ Hz, CH), 6.96 (1 H, dd, ${}^{3}J_{HH} = 9.0$ Hz, 4, ${}^{4}J_{HH} = 2.7$ Hz, CH), 8.29 (1 H, d, {}^{4}J_{HH} = 3.0 Hz, 4-H_{Py}), 8.56 (1 H, d, {}^{4}J_{HH} = 3.0 Hz, 6-H_{Py}), 9.75 (1 H, s, OH).
- (11) Typical ¹³C MNR data (Varian Mercury-400 spectrometer) of pyridones obtained: Compound 7bb: 13C NMR (100 MHz, DMSO- d_6): $\delta = 20.4$ [(CH₃)₂CH], 21.3 (CH₃), 50.3 $[(CH_3)_2CH], 102.7 (3-C_{Py}), 116.4 (CN), 117.3 (5-C_{Py}), 117.4 (CH), 124.2 (C_q), 128.8 (CH), 131.1 (CH), 134.9 (C_q), 146.2$ (4-CH_{Py}), 147.2 (6-CH_{Py}), 154.3 (2-C_{Py}), 159.5 (C_q), 190.7 (C=O). Compound **7ef**: ¹³C NMR (100 MHz, DMSO- d_6): $\delta = 56.1 (CH_3O), 104.3 (3-C_{Py}), 114.1 (5-C_{Py}), 116.1 (CN),$ 117.3 (CH), 118.5 (CH), 120.8 (CH), 124.6 (C_q), 127.2 (CH), 129.9 (CH), 130.0 (CH), 139.8 (C_q), 148.3 (4-CH_{Py}), 150.1 (6-CH_{Py}), 150.2 (2-C_{Py}), 152.8 (C_q), 159.5 (C_q), 190.1 (C=O). Compound **8ba**: ¹³C NMR (100 MHz, DMSO-*d*₆): $\delta = 20.4 (CH_3), 43.1 (CH_2), 53.5 (CH_2), 117.1 (3-C_{Pv}), 118.2$ (5-C_{Py}), 119.5 (CH), 124.9 (CH), 127.5 (CH), 128.0 (CH), 128.4 (CH), 128.5 (C_q), 128.6 (CH), 129.0 (CH), 129.3 (CH), 130.6 (CH), 134.3 (C_q), 136.5 (C_q), 139.5 (C_q), 143.9 $(4-CH_{Py}), 148.9 (6-CH_{Py}), 154.1 (2-C_{Py}), 161.9 (C_q), 162.9$ (CONH), 192.1 (C=O). Compound 9ea: ¹³C NMR (100 MHz, DMSO- d_6): $\delta = 31.1$ (COCH₃), 56.1 (CH₃O), 114.1 (CH), 116.8 (5-C_{Py}), 118.1 (CH), 119.6 (C_q), 125.7 (CH), 126.3 (3-C_{Py}), 142.9 (4-CH_{Py}), 146.9 (6-CH_{Py}), 149.9 (C_q), 152.6 (2- C_{Py}), 161.5 (C_q), 191.2 (COAr), 196.7 (COCH₃). Compound **9eb**: ¹³C NMR (100 MHz, DMSO-*d*₆): δ = 31.2 (COCH₃), 38.7 (NCH₃), 56.1 (CH₃O), 114.1 (CH), 116.5 (5-C_{Py}), 118.2 (CH), 119.8 (C_q), 124.8 (CH), 125.5 (3-C_{Py}), 142.6 (4-CH_{Py}), 149.8 (C_q), 150.2 (6-CH_{Py}), 152.6 (2- C_{Py}), 161.5 (C_q), 191.5 (COAr), 196.9 (COCH₃).
- (12) Typical IR data (Nexus-470 spectrometer) of pyridones obtained: Compound **7bb**: IR (KBr): v = 3400-2700 (br, OH), 3068, 2985, 2932, 2226 (C=N), 1671 (C=O), 1654 (C=O_{Py}), 1630, 1577, 1532, 1482 cm⁻¹. Compound **7ef**: IR (KBr): v = 3470-3150 (br, OH), 2231 (C=N), 1677 (C=O), 1660 (C=O_{Py}), 1539, 1508, 1417 cm⁻¹. Compound **8ba**: IR (KBr): v = 3600-3100 (br, OH), 3288 (NH), 3056, 3023, 2952, 1675 (C=O), 1664 (sh, C=O_{Py}), 1632 (CONHCH₂Ph), 1603, 1528 cm⁻¹. Compound **9ea**: IR (KBr): v = 3600-3200 (br, OH, NH), 3056, 2917, 2835, 1685 (COMe), 1665 (C=O_{Ph}), 1637, 1593, 1485, 1218 cm⁻¹. Compound **9eb**: 3500-3100 (br, OH), 3078, 2960, 1677 (COMe), 1646 (C=O_{Py}), 1538, 1508, 1413 cm⁻¹.
- (13) Typical MS data (MX-1321 instrument) of pyridones obtained: Compound 6a: MS (EI, 70 eV): *m/z* (%) = 240 (39) [M⁺], 147 (19), 121 (86), 120 (100), 92 (45), 65 (54), 39 (43). Compound 7ef: MS (EI, 70 eV): *m/z* (%) = 346 (30) [M⁺], 254 (11), 150 (100). Compound 8ba: MS (EI, 70 eV): *m/z* (%) = 452 (19) [M⁺], 106 (100), 91 (54). Compound 9ea: MS (EI, 70 eV): *m/z* (%) = 287 (76) [M⁺], 272 (10), 150 (100), 135 (21), 43 (24).Compound 9eb: MS (EI, 70 eV): *m/z* (%) = 301 (64) [M⁺], 286 (17), 150 (100), 135 (12).
- (14) For related interactions of enolates with nitrile groups affording 2-pyridone ring see: Bondavalli, F.; Bruno, O.; Lo Presty, E.; Menozzy, G.; Mosti, L. Synthesis 1999, 1169.