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Abstract-The crystal structure of IPh,SnCH,CH,CO,Me: C’6H,710ZSn (10; X = I) has been 
determined ; the tin atom adopts a distorted trigonal bipyramidal geometry, with iodine 
and the internal carbonyl oxygen in axial sites. The chelated structure of 10 (X = I) [v(CO) 
1684 cm-‘] persists in such solvents as dichloromethane, chloroform, tetrahydrofuran and 
acetonitrile. Pyridine is able to compete with the intramolecular ester coordination in 
CH,C& solution with the formation of unchelated IPh2Sn(py)CH2CH,C02Me (11) [v(CO) 
1734 cm-‘] ; the formation constant of 11 is 0.07 +O.Ol 1 mol-’ at 25°C. 

Ester groups are generally weak donors towards 
organotin acceptors. However, when sited intra- 
molecularly, for example as in C12Sn(CH2CH2 
CO,Me), (l),’ Cl,SnCH2CH2C02R (2), (R = Me ;’ 
R = Pr’ ‘) and C13SnCH2CH2CH2C02Et (3),3 they 
are able to complex strongly to tin centres.4 
Crystal structure determinations’-3 and spectral 
dataG6 for l-3 and related compounds show 
that RO,C(CH,), groups do act as chelating 
ligands in the solid state. Similar conclusions are 
obtained in non-coordinating solvents.2.3 However 
in coordinating solvents such as MeCNZs3 or in the 
presence of nitrogen donors, e.g. pyridine or 2,2’- 

*Author to whom correspondence should be addressed. 

bipyridine, the coordination by the ester groups, 
e.g. in 2 and 3, can be broken.‘,’ From comparison 
of stability constants, the five-membered chelate 
ring in 2 is found to be stronger than the six-mem- 
bered ring in 3. 

The chelating abilities of R02CCH2CH2 and 
other groups (Me2NCS2 and 8-quinolinato) have 
been compared in appropriate compounds, e.g. 
[Me02CCH2CH2SnC13_,(S2CNMe2),1 (4 ; n = l- 
3),7,8 [Me02CCH2CH2)2Sn(S2CNMe2)2] (5)9 and 
[(Me02CCH2CH2)2SnCl(8-quinolinate)] (6) :I0 struc- 
tural studies indicate that the Me02CCH2CH2 
group has the weakest chelating ability of these 
three groups. The sulphido compounds, [MeO, 
CCH2CH2),SnS13 (7)” and [Me02CCH2CH2Sn 
(WS2CNMe2)13 @),” in the solid state, both 
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contain monodentate RO,CCH,CH, units as 
does [(R02CCH2CHJ(Me2NCS2)Sn(XCH,CH,),YI 
(9R=Me,X=S,Y=O;R=Et,X=0,Y=NMe).‘2 

The Lewis acidity of organotin halides generally 
decreases in the sequence : RSnX, > R2SnX2 > 
R,SnX. Thus it is anticipated that the tin atom 
in XPh2SnCH2CH,COaMe (10) would be a poorer 
acceptor centre than that in X,SnCH2CH2C02Me 
(X = halide) towards both the internal ester group 
and external donors. In order to investigate the 
coordination chemistry of 10, we have determined 
the crystal structure of 10 (X=1) and have studied 
its coordination by donor molecules. We now wish 
to report our results. 

EXPERIMENTAL 

The compound Ph3SnCH2CH2C02Me (11) was 
prepared from Ph,SnH and CHNHCO*Me by a 
published procedure.13 The reaction of 11 (4.37 g 
0.01 mol) and I2 (2.54 g, 0.01 mol) in CC& (50 ml) 
gave IPh2SnCH2CH2C01Me. The reaction residue, 
after removal of all volatiles, was recrystallized 
from EtOH to give a solid ; melting point 77°C (ref. 
13, 76°C). Found : C, 39.3 ; H, 3.5 ; I, 26.2. Calc. 
for C16H17102Sn: C, 39.5, H, 3.5; I, 26.1%. ‘19Sn 
NMR (CDC13, 33.35 MHz) : 6 -92.07 ppm (rela- 
tive to Me,Sn). 

Cl,SnCH2CH2C02Me was a recrystallized 
sample from a previous study.6 

Solvents and donor molecules 

MeCN was purified by a standard procedure ;I4 
CH2C12 and THF were dried over CaH2 and dis- 
tilled prior to use. Donor molecules were either 
redistilled or recrystallized prior to use. 

The compound Cl,Pt(COD) (COD = 1,5-cyclo- 
octadiene) was obtained by a literature procedure.‘5 

Formation constants 

These were determined from IR data, from the 
carbonyl region, at 25 ) 1°C in CH2C12 solution as 
previously described.6 

Reaction between 11 and Cl,Pt(COD) 

Solutions of 11 (0.0437 g, 1 mmol) and 
Cl,Pt(COD) (0.0374 g, 1 mmol) in CD2C12 (total 
volume 1 cm’) were mixed and the reaction moni- 
tored by ‘H NMR spectroscopy (220 MHz) at 30°C. 
The successive formations of C1Ph2SnCH2CH2 
CO*Me and C12PhSnCH2CH2C02Me were indi- 
cated (see Table 1 for ‘H NMR details). 

The platinum products-ClPhPt(COD) and 
Ph,Pt(COD)-were also detected by NMR. 

ClPhPt(COD). 6 ‘H 2.46 (m, 8H, CHJ, 4.55 (t, 
2H, J”9Pt-‘H 75 Hz, CH), 5.70 (t, 2H, 34 Hz, CH), 
6.7-7.4 (m, 5H, phenyl). 

Ph,Pt(COD). 6’H 2.5 (m, 8H, CH2), 5.02 (t, 4H, 
J”9Pt-‘H, 40 Hz, CH), 6.6-7.5 (m, lOH, phenyl). 

Crystal structure determination 

Crystal data. C’6H’7102Sn, M=486.91, mono- 
clinic, space group P2,,,, a= 10.073(8), b= 
17.721(14), c= 10.427(10) .& fi= 112.11(7)“, I’= 
1725(2) A3, 2=4, 0,=1.875 g cm-3, D,= 1.88 
g cmm3, F(OO0) = 928, ~(Mo-K,) = 3.26 mm-‘, 
il= 0.71069 A, T= room temperature. 

Table 1. ‘H NMR spectra (220 MHz) for Ph,X,_,,SnCH,CH,CO,Me in CD&l2 
6( J”9Sn-‘H Hz) 

Compound 
CH,” CH1” 

c( B OMe Phb 

Ph,SnCH,CHzC02Me 
m+p 

1.61 2.65 3.43 7.35 7.:3 

(55) (68) 
IPh2SnCH2CH,C02Me 1.96 2.82 3.73 7.35 7.76 
CIPh,SnCH,CHzCOIMe 1.73 2.82 3.78 7.38 7.77 
Cl,PhSnCH,CH&O,Me 1.96 2.92 3.86 7.46 7.90 
Cl,SnCH2CH,C02Me 2.23 2.96 3.97 - - 

(108) (191) 

“Triplet JH,u 8 Hz. 
b Multiplets. 
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Data collection andprocessing. Colourless crystal, 
0.31 x 0.14 x 0.25 mm. The cell dimensions were 
obtained from setting angles of 14 independent 
reflections with 20x20” on a Nicolet P3 4-circle 
diffractometer using monochromatic MO-K, 
radiation. 3059 unique intensities were measured 
with 0~25” as 9120 scans ; 1958 reflections had 
F>5a(F). Range of h k I: O<h<ll; Odk<21; 
-ll<Z<ll. 

The data were corrected for Lorentz and pola- 
rization effects but absorption was ignored. Two 
reference reflections, monitored periodically, 
showed no significant variation in intensity. 

Structure analysis and refinement 

The structure was determined by the heavy-atom 
method (Patterson function), which revealed the 
approximate positions of the tin and iodine atoms. 
The remaining non-hydrogen atoms were located 
from successive Fourier difference maps using 
SHELX 76.16 The hydrogen atoms were placed in 
calculated positions and refined relative to their 
bonded carbons. Full-matrix least squares cal- 
culations on F with unit weights and aniso- 
tropic thermal parameters for all non-hydrogen 
atoms and isotropic thermal parameters for hydro- 
gen atoms converged at R=0.052. Atomic scat- 
tering factors for carbon, hydrogen, oxygen and 
tin were takenI from SHELX 76. Data for iodine 
was taken from the International Tables for X-ray 
Crystallography.” Final BP,,,,, = +0.76 eAm3, 
Apmin= -0.66 eA-3. Molecular geometries were 
generated by the GX package.18 

RESULTS AND DISCUSSION 

Compound 10 (X = I) was obtained by the reac- 
tion of 11 with 12; this cleavage reaction occurs 
particularly readily, due to the nucleophilic assist- 
ance afforded by the ester group in the rate-deter- 
mining step. Other reactions of 11 with electrophilic 
reagents are facile, e.g. even the weakly electro- 
philic, Me,SiX, is able to cleave a Ph-Sn bond” in 
11 to give 10 (X =Cl, Br or I) ; Cl,Pt(COD) can 
cause cleavage of two Ph-Sn bonds to give suc- 
cessively 10 (X = Cl) and Cl,PhSnCH&H$ZO,Me, 
as shown in this study. ‘H NMR spectral data for 
Ph,X,_.SnCH,CH,C02Me compounds are given in 
Table 1. 

Crystal structure of 10 (X = I) 

The atomic arrangements are shown in Fig. 1. 
Bond lengths are given in Table 2 and bond angles 

Fig. 1. Molecular structure of 10 (X = I). 

in Table 3. Compound 10 (X=1) exists as discrete 
molecules, containing five-membered chelate rings. 

The geometry about tin is that of a distorted 
trigonal bipyramid, the axial atoms being I [Sn-I 
2.81 l(2) A] and the carbonyl oxygen [Sri--- 2.55(2) 
A] with the valence angle, I-Sn-0, equal to 
170.5(3)“. The three carbon units are in equatorial 
sites [Sn-C=2.10(2t2.16(2) A] : the sum of the 
C-Sri--- valence angles is 353.8”. 

Intramolecular Sn-0 distances in other 
RO,(CH,),-Sn compounds are given in Table 4. 
It can be seen in Table 3 that the Sri--O distance in 
10 (X=1) is comparable with those in 1 (Sn-0 
2.52), but is appreciably greater than in 2 [Sri--- 
2.337(5)-2.357(5) A]. The sum of the covalent radii 
of tin and oxygen is 2.13 A, while the sum of the 
van der Waals’ radii is 3.70 A. The Sn-I bond 
distance is relatively long, cf. the value of 2.764(2) 
8, in the five-coordinate tin compound,20 3-C- 
(IBu2SnCH2)-1,2 : 5,6-di-O-isopropylidene-cr-D-allo- 
furanose, in which the intramolecular Sn-0 
distance is 2.68(2) A. Sn-I bond lengths in a num- 
ber of tetrahedral tin compounds range2’ from 
2.69(3) to 2.729(3) A. 

Solution study 

Compound 10 (X =I) remains completely che- 
lated in chlorocarbon solvents (CH2C12 and CCIJ 
[v(CO) 1684 cm-‘] as well as in MeCN and THF 
solutions : the values of v(C0) for 10 (X = I) in a 
KBr disc is 1670 cm-‘, while v(C0) for Ph,SnCH, 
CH,CO,Me in KBr is 1740 cm-‘. Similar findings 
are obtained for 10 (X=Cl). As can be seen from 
the ‘H NMR spectral data given in Table 1, com- 
plexation of the MeO,C group to tin [in 
Ph,X3_$nCH2CH2C02Me (n=O, 1 or 2)] results 
in shifts for 6Me and in fi-CH*, from values in 
Ph,SnCH,CH,COzMe. 
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Table 2. Bond lengths (A) for 10 (X=1) with ESDs in par- 
entheses 

Sn-I 
Sn-C( 1) 
Sn-C(l3) 

C(l4tc(l5) 
C(l5)--0(2) 

C(l)--C(2) 
C(2>--c(3) 
C(3)-C(4) 
C(4)--C(5) 
C(5)_C(6) 
C(6)-C(1) 

2.81 l(2) 
2.14(2) 
2.10(2) 
1.48(3) 
1.30(3) 

1.38(3) 
1.39(3) 
1.35(4) 
1.35(4) 
1.38(3) 
1.37(3) 

Sn-O( 1) 
Sn-C(7) 

C(l3)--C(l4) 
C(l5)--0(1) 
C(l6F-o(2) 

C(7)-C(l2) 
C(ll)-C(12) 

C(lOFcxl2) 
C(9)-C(l0) 
C(8)--c(9) 
C(7)_C(8) 

2.55(2) 
2.16(2) 
1.45(4) 
1.20(2) 
1.47(3) 

1.33(3) 
1.37(3) 
1.34(4) 
1.35(3) 
1.40(3) 
1.39(3) 

In CH&l, solution, pyridine is able to compete 
with the intramolecular ester coordination in 10 
(X = I) and equilibrium (1) is set up. The value of 
the formation constant, K,, at 25°C was calculated 
to be 0.07 f 0.01 dm3 mol-‘. Only one pyridine mol- 
ecule is able to coordinate to 10. The value of K, 
indicates the difficulty of opening the chelate ring ; 
even in pyridine as solvent, only ca 40% has the 
open structure. One molar equivalents of such 
donors as 2,2’-bipyridine, acridine and Ph3P, had 
no impact on the spectrum of 10 (X = I) in CH2C12 
solution. 

R 
+ 1 

PY - 
Ok (l) 

‘0th dY 

(10,X=1) (12) 

Y (CO) 1684 cm-’ v(CO) 1734 mi’ 

K,=L~12~1/I~10,x=l~l~pyl 

The compound Cl,SnCH,CH,CO,Me has been 
previously shown to take part in equilibria with 
pyridine in CHzCll solution (Scheme 1).6 With 
C13SnCH2CH2C0,Me 2 (R= Me), both one and 
two molecules of pyridine could be coordinated ; 
however only on coordination of the second mol- 
ecule of pyridine is the chelate ring broken. 

From comparison of values of K, and K3, it can 
be seen that the chelate ring in 10 (X=1) is con- 
siderably more resistant to opening than in 13 ; in 
other words, the intramolecular ester coordination 
in 10 (X = I) is surprisingly stronger than that in 13. 
The relative strengths of the chelate rings in 10 
(X = I) and 2 are also borne out by the effects of 
MeCN on the opening of the chelates. 

Formation constants for 1: 1 R,SnCl-py com- 
plexes have also been reported :22*23 values obtained 
are 1.9 dm3 mol- ’ for R = Me in Ccl4 at 27°C (and 
also in C6H6 at 30°C) and 1.1 dm3 mall’ for R = Ph 

Table 3. Bond angles (“) for 10 (X = I) with ESDs in parentheses 

I-Sn-C( 1) 
I-Sn-C(7) 
I-Sn-C( 13) 
I-Sn-O( 1) 
C(l)--Sn-C(13) 

Sn-C(13)--C(14) 
C(l3)--c(l4W(l5) 
C(l4tC(l5)--0(1) 
C(lS)-O(l)--Sn 

Sn-C(7)--C( 12) 
C(7~C(l2)--c(ll) 
c(12)--C(11)-c(10) 
C(1 l~c(lo)--c(9) 
C(lOtc(9)-+8) 
C(9)--C(8>--c(7) 
C(8)--c(7)--c(l2) 
C(8)--C(7tSn 

96.9(5) 
100.3(5) 
97.6(6) 

170.5(3) 
119.8(7) 

116.6(14) 
119.4(19) 
120.0(18) 
110.7(11) 

123.6(14) 
123.3(19) 
120.7(19) 
117.7(17) 
122.6(20) 
117.9(17) 
117.5(16) 
118.8(12) 

O(l)--k--C(l) 
0( I)--Sn-C(7) 
O(l)--Sn-C(13) 
C(l)-Sn-C(7) 
C(7)--Sn-C( 13) 

C(l4k--C(l5)_-0(2) 
C(15>--0(2>--c(16) 
o(l)-C(l5)--o(2) 

Sn--C(lE-W) 
C(l)-C(2)--c(3) 
C(2F--C(3)--c(4) 
C(3)--C(4)--c(5) 
C(4)_C(5)_C(6) 
C(5)_C(6)--C(l) 
C(6)--C( 1)-Sn 
C(2F--W)_C(6) 

85.5(6) 
87.2(5) 
73.4(6) 

112.1(7) 
121.9(7) 

115.4(16) 
116.0(15) 
124.6(16) 

122.0(13) 
118.9(17) 
122.1(19) 
119.6(20) 
119.2(17) 
122.4(18) 
120.2(13) 
117.8(16) 
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Table 4. Crystal structure data for RO,C(CH,),-Sn compounds 

Crystal structure details v(C0) solid (cm-‘) Reference 

(MeO,CCH,CH,),SnC1(8-quinolinate) 

MeO,CCH,CH,SnCl, 

Pr’02CCH2CH,SnCl, 

Me0,CCH,CH,SnCl(S2CNMe2)z 

MeO,CCH,CH,Sn(S,CNMe,) 
[(SCH,CH,),Ol 

EtO,CCH$H,Sn(S,CNMe,) 
](OCH2CHANMel 

Et02CCH2CH2CH2SnCl, 

Six-coordinate Sn; 

both > complexed Sn-0 2.52 8, 

Six-coordinate Sn; 

one & complexed Sn-0 2.847(4) A 
/- 

Seven-coordinate Sn; 

one> complexed Sn-0 2.751(5) 8, 

Four-coordinate Sn; 

no* complexed bridging S 

Five-coordinate Sn; 

\ coordinated Sn-0 2.347(5) h; 
/-- 
Five-coordinate Sn 

b coordinated Sn-0 2.337(5) A 
/- 
Six-coordinate Sn; 

’ 
/” 

omplexed Sn-0 2.436(6) A 

Six-coordinate Sn 

* 
not complexed 

Five-coordinate Sn; 

\, not complexed [Sn---0 3.19 A] 
/- 
Six-coordinate Sn; 

> 
not complexed 

Six-coordinate Sn; 

> 
not complexed 

Five-coordinate Sn; 

\, complexed Sn+ 2.405(8) A 
/- 
Five-coordinate Sn; 

&I complexed Sn-0 2.55(2) A 
/- 

1675” 1 

1732” 10 

1712” 

1730” 9 

1693” 

1713 11 

1658 1 

2 

1652 7 

1724 8 

1730 11 

12 

12 

1645 3 

1684 b 

“V. G. Kumar Das, N. S. Wang and P. J. Smith, Znorg. Chim. Acru. 1981,49, 149. 
b This study. 

PY 

K3 
PY _ 

PY 

(2, R=Md 

Y (CO) 1684cni’ 

(13) dC0)1648cni 

K,= [13l/I(2,R=Me)l > 105at2SoC 

K,= r141/ I131 Ipyl = 1oo.8s at 25T 

Scheme 1. 

(14) v(CO) 173Ocd 
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in C,H6 at 30°C. Compounds R$nCl and R,SnI 10. 
have similar Lewis acidities, and so the reduction of 
the Lewis acidity of 10 (X = I) arising from chelation 
can be deduced to be a factor of ca 20. 11. 

1: 1 Complexes of Me,SnX-py (15) have been 
isolated ; moreover the crystal structure of 15 12. 

(X= Cl) has been determined.24 As predicted by 
the values of the formation constants of 15, it is 

13 
’ 

completely dissociated in non-polar solvents. 
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