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SYNTHESIS OF IKARUGAMYCIN: STUDIES ON THE 
CARBOTRICYCLIC SUB-UNIT 

Raymond CF. Jones * and Richard F. Jones 

(Chemistry Department, Nottingham University, Nottingham NG7 2RD, UK) 

Summary: A hexahytiindane precursor to the as-hydrindacene portion of ikarugamycin is prepared by a 
stereoselective Michael reaction-Diels-Alder reaction sequence; a second Michael reaction in the desalkyl series 
produces an indeno[4,Ic]furau isomer of the as-hydrmdacene carbotricycle. 

The most structurally unusual natural products in the 3-acyltetramic acid group are ikanrgamycin (1) and 

its congener capsimycinl Both contain a 3-acyltetramic acid subunit embedded in a macrocyclic lactam fused 

to a unique non-terpenoid carbotricyclic system, an ar-hydrmdacene. Jkarugamycin has anti-protozoal 

properties whilst capsimycin displays antifungal activity. During our programme in the tetramic acid area? we 

am examining a total synthesis of of ikarugamycin. The strategy, outlined in Scheme 1, envisaged connections 

at the tetramic acid 3-enoyl function 2b*3 and at the lactam bond as the construction for the 16-membered 

macrocycle; further disconnection at the Z-double bond and functional group interconversion leads to the key 

intermediate (2). Our plan entailed assembly of (2) by a Michael reaction-Diels-Alder reaction-Michael 

reaction approach (Scheme 1).4 We report the malisation of the fist two parts of this sequence, and the results 

of a second Michael reaction in a desalkyl series to produce the indeno[4,5c]furan isomer of (and potential 

precursor to) the ar-hydrindacene unit of (2). 

Scheme 1 

We first investigated the construction sequence in the ring A-unsubstituted series. Thus pentane-l&Iiol 

was protected as the mono-THP ether and oxidised to aldehyde (3a) [i, dihydropyran, PPTS (0.1 mol equiv.); 

60%: ii, PCC, NaOAc; 78%]. The diene portion was elaborated (Scheme 2) by addition of the lid&derivative 

of Q-I-methoxybut-1-en-Zyne (BuLi. THF, -78’C) to aldehyde (3a) followed by sequential addition of 

ethanol, LiAlH,+ and 1M hydrochloric a&k5 ueannent of the intemn&te methoxydienol under mild acidic 

conditions [THF: H20 (955). p-TsOH (0.04 mol equiv.)] led to the dienal(4a) [43% from (3a)].es7 The triene 
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esters (5a,b) were formed by condensation of (4a) with carboethoxy- and carbomethoxy-methylenetriphenyl- 

phosphoranes (toluene, reflux), or with trimethyl phosphonoacetate (Kzq aq., 20YJ8 (73,73, and 80%, 

respectively). The THP ether was efficiently removed (Amberlite 15, MeOH) to afford alcohols (6a,b) (90, 

81%) which were oxidised (PCC, NaOAc) to the aldehydes (7a,b) (61,82%). Alcohol (6b) was also prepared 

from 2,3dihydropyran by hydration to 2-hydroxytetrahydropymng and chain extension with Q-l-methoxy- 

but-1-en-3-yne as above to give the hydroxydienal(4b) (51%). Condensation of (4b) with carbomethoxy- 

methylenetriphenylphosphorane (toluene, reflux) gave (6b) in a less efficient reaction (44%) than from (4a). 

The triene-ester aldehydes (7a,b) were condensed with dimethyl (2-oxopropyl)phosphonate under mild 

conditions (K&$ aq., 2OT) to assemble the dienophile unit and complete construction of the cycloaddition 

substrates (8a,b) (81,794). isolated as the all-E isomers. 

Extension of this methodology to the series substituted in ring A required a route to the eryrk&ZethylS- 

methylpentane-1,5diol derivative (9) based on the diastereoselective Michael addition of a butyrate enolate to a 

but-2-enoate ester (Scheme 3).l” Thus ethyl and t-butyl butyrates as their Z-enolatedl i&DA, THP-HMPA 

(4: l), -78’Cj were treated with ethyl but-2-enoate at -78’C to give predominantly the eryfk+2-etbyl-f 

methylglutarates (lOa) (65%. ~20.1 eryfhro: rhrw by 13C n.m.r. spectroscopy) and (lob) (97%. 51 eryrko: 

kw). The stereochemical assignments for (10a,b)1ua*12 were confirmed by conversion of the diesters to the 
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Scheme 2 

Reagents: i, (2)~MeOCH=CHC=CLI, lHF, -78’C; ii, EtOH: iii, LiAlH,; iv, WHCl aq.; v, p-TsOH, THF aq.; vi, 
Ph#CHC02Et or Ph,FCHCO.#e, toluene, reflux; vii, (MeO),P(0)CH2C02Me, K&O3 aq., 20%; viii, Amberlfte 15, 
MeOH; ix, PCC, NeOAc; x, (MeO),P(O)CH,COMe, K *CO, aq., 20%; xi, toluene, reflux; xii, Et.$lCl, CH2C12, 20%; xiii, 
LDA, THF-HMPA, -78’C, PhC~OCOCN, 10 min. 
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corresponding glutaric anhydride, i.e. predominandy c&isomer (11) [i, from (1Oa): KOH, MeOH aq.; 56%; 

from (lob): p-TsOH, C&j. reflux; 79%; then KOH, MeOH aq.; 62%; ii, A30, reflux; 81% in each series]. 

The diastereoisomer mixture containing (lob) was carried forward without separation. The less hindered ethyl 

ester was reduced chemoselectively13 EiBQ, MeOH (1 mol equiv.), Et# 83%], the alcohol protected 

[dihydropyran. PFl’S (0.25 mol equiv.); 9381 and the t-butyl ester reduced (LiAlH4, E%O, reflux; 93%) to 

afford THP-alcohol(9). The sequence developed for protected pentanediol was now applied (Scheme 2). 

Oxidation to the aldehyde (3b) (89%), four-carbon chain extension with the methoxybutenyne to produce the 

dienal(4c) (58%) and condensation with carbomethoxymethylenetriphenylphosphorane (toluene, reflux; 73%) 

or trimethyl phosphonoacetate (K2Ce, aq., 2o’C. 82%) afforded the triene ester (5~). Removal of the THP 

group to give (6~) (Amberlite 15, MeOH, 98%) followed by oxidation (PCC, NaOAc; 93%) gave the aldehyde 

(7~) from which the cycloaddition substrate (8~) was assembled [dimethyl (2-oxopropyl)phosphonate, K$O3 

aq., 2o’C. 82451. The ratio of diastereoisomers (5: 1 ery&o: rhreo) was unchanged throughout this sequence. 

(R= Et, t-Bu) (10) a;R=Et 
b; R= t-Bu 

Scheme 3 

(9) (11) 

Reagents: i, LDA, THF-HMPA, -78-C; ii, LiBH.,, MeOH-Et,O; iii, dihydropyran, PPTS; iv, LiiIH,+ Et20; v, from (lOa): 
KOH, MeOH aq.; from (lob): p-TsOH, G&, reflux; then KOH, MeOH aq.; vi, &O, reflux. 

The tetraenes (8a-c) underwent cycloaddition either thermally (0.05M in toluene, mflux 20-2431) or with 

Lewis-acid catalysis (E$AlCl, CH$&, 2o’C. 1 8h)14 to produce the hexahydmmdanes (12a-c) as single pure 

diastemoisomers after one crystallisation in acceptable yields: (12a) 67% thermally, 63% with E$AlCI; (12b) 

70 and 61%; (12~) 51 and 43%. The Lewis-acid procedure, although milder, was less efficient, producing 

some tetraene polymerisation; the reduced yields of (1%) relative to (12a,b) am attributed to a separation at this 

stage of the 5:l mixture of evfb& and f!rre~arrangements of ring A substituents (see above). 

The end&iastereoselectivity of these cycloadditions is well precedented14~15 and supported by our 

spectral data7 e.g. S, for UfCOMe: (12a) 2.87 (lH, dd, J 11.3 and 6.2 Hz); (12b) 2.88 (IH, dd, J 1 I and 

6.2 Hz); (12~) 2.85 (lH, dd, J 11.2 and 6.3 Hz), representing one ‘axial-axial’ and one ‘axial-equatorial’ 

coupling, not available from any other cycloaddition geometry. The stereochemistry of the ring A substituents 

relative to the bridgehead hydrogens has been ratioualised and is observed in related cy-cloadditions.4a*b*15 

The final part of our strategy towards the intermediate (2) called for elaboration of bicycles (12) from a 

ketone to a kketoester and an intramolecular Michael addition to form ring C. C-Acylation of the ketone (12a) 

was envisaged with a cyanoformate;16 in the event, treatment of the enolate of (12a) [LiNP&, THF, HMPA (1 

mol e&v.), -78-C, 10 min] with benzyl cyanoformate led to the isolation of a single tricyclic compound 

(76%) characterised as the octahydminden~4,5-c]furan ( 13).7 The t&ketoester from C-acylation is thus under- 

going in situ ring closure of its enolate via conjugate addition of the keto oxygen atom in a 5-exo-trig manner 

(14). This is isomeric with the desired ring closure through carbon, which may be regarded as a 5-(enol-exe)- 

exo-trig (15) or a 5-(enol-endo)-exo-trig (16) proces~,‘~ and must be kinetically less favourable. 

We have therefore malised the first two parts (conjugate addition-cycloaddition) of our suategy and 
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demonstrated that the final conjugate addition takes an alternative kinetic pathway to pmvide a heterocyclic 

isomer of the desired carbolricycle. We are pursuing the use of the indenofuran as a pztxsortotherequki 

framewokl* We thank SERC and ICI Agmchemicals for a CASE studentship (R.F.J.) and Dr. M.J. Bushel1 

for heluful discussions. 
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