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SYNTHESIS OF IKARUGAMYCIN: STUDIES ON THE
CARBOTRICYCLIC SUB-UNIT

Raymond C.F. Jones * and Richard F. Jones
(Chemistry Department, Nottingham University, Nottingham NG7 2RD, UK.)

Summary: A hexahydroindane precursor to the as-hydrindacene portion of ikarugamycin is prepared by a
stereoselective Michael reaction-Diels-Alder reaction sequence; a second Michael reaction in the desalkyl series
produces an indeno[4,5-c]furan isomer of the as-hydrindacene carbotricycle.

The most structurally unusual natural products in the 3-acyltetramic acid group are ikarugamycin (1) and
its congener capsimycin.! Both contain a 3-acyltetramic acid sub-unit embedded in a macrocyclic lactam fused
to a unique non-terpenoid carbotricyclic system, an as-hydrindacene. Ikarugamycin has anti-protozoal
properties whilst capsimycin displays antifungal activity. During our programme in the tetramic acid area,? we
are examining a total synthesis of of ikarugamycin. The strategy, outlined in Scheme 1, envisaged connections
at the tetramic acid 3-enoyl function??3 and at the lactam bond as the construction for the 16-membered
macrocycle; further disconnection at the Z-double bond and functional group interconversion leads to the key
intermediate (2). Our plan entailed assembly of (2) by a Michael reaction-Diels-Alder reaction-Michael
reaction approach (Scheme 1).# We report the realisation of the first two parts of this sequence, and the results
of a second Michael reaction in a desalkyl series to produce the indeno[4,5-c]furan isomer of (and potential
precursor to) the as-hydrindacene unit of (2).
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We first investigated the construction sequence in the ring A-unsubstituted series. Thus pentane-1,5-diol
was protected as the mono-THP ether and oxidised to aldehyde (3a) [i, dihydropyran, PPTS (0.1 mol equiv.);
60%: ii, PCC, NaOAc; 78%]. The diene portion was elaborated (Scheme 2) by addition of the lithio-derivative
of (Z)-1-methoxybut-1-en-3-yne (BuLi, THF, -78°C) to aldehyde (3a) followed by sequential addition of
ethanol, LiAlH,, and 1M hydrochloric acid;? treatment of the intermediate methoxydienol under mild acidic
conditions [THF: HyO (95:5), p-TsOH (0.04 mol equiv.)] led to the dienal (4a) [43% from (3a)].67 The triene
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esters (5a,b) were formed by condensation of (4a) with carboethoxy- and carbomethoxy-methylenetriphenyl-
phosphoranes (toluene, reflux), or with trimethyl phosphonoacetate (K,CO4 aq., 20°C)8 (73, 73, and 80%,
respectively). The THP ether was efficiently removed (Amberlite 15, MeOH) to afford alcohols (6a,b) (90,
81%) which were oxidised (PCC, NaOAc) to the aldehydes (7a,b) (61, 82%). Alcohol (6b) was also prepared
from 2,3-dihydropyran by hydration to 2-hydroxytetrahydropyran® and chain extension with (Z)-1-methoxy-
but-1-en-3-yne as above to give the hydroxydienal (4b) (51%). Condensation of (4b) with carbomethoxy-
methylenetriphenylphosphorane (toluene, reflux) gave (6b) in a less efficient reaction (44%) than from (4a).
The triene-ester aldehydes (7a,b) were condensed with dimethyl (2-oxopropyl)phosphonate under mild
conditions (KyCO; aq., 20°C) to assemble the dienophile unit and complete construction of the cycloaddition
substrates (8a,b) (81, 79%), isolated as the all-E isomers.

Extension of this methodology to the series substituted in ring A required a route to the eryrhro-2-ethyl-3-
methylpentane-1,5-diol derivative (9) based on the diastereoselective Michael addition of a butyrate enolate to a
but-2-enoate ester (Scheme 3).10 Thus ethyl and t-butyl butyrates as their Z-enolates!! [LDA, THF-HMPA
(4:1), -78°C] were treated with ethyl but-2-enoate at -78°C to give predominantly the erythro-2-ethyl-3-
methylglutarates (10a) (65%, >20;1 erythro: threo by 13C n.m.r. spectroscopy) and (10b) (97%, 5:1 erythro:
threo). The stereochemical assignments for (10a,b)102:12 were confirmed by conversion of the diesters to the
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Reagents:i, (2)-MeOCH=CHC=CLI, THF, -78°C; ii, EXOH; iii, LIAIH; iv, IMHCl aq.; v, p-TSOH, THF aq.; vi,
Ph3PCHCO,Et or PhaPCHCO,Me, toluene, reflux; vii, (Me0),P(O)CH,CO,Me, K ;CO3 aq., 20°C; viii, Amberlite 15,
MeOH; ix, PCC, NaOAc; x, (MeQ),P(O)CH,COMe, K ;CO3 aq., 20°C; xi, toluene, reflux; xii, EtAIC), CH,Cl,, 20°C; xiii,
LDA, THF-HMPA, -78°C, PhCH, OCOCN, 10 min.



corresponding glutaric anhydride, i.e. predominantly cis-isomer (11) [i, from (10a): KOH, MeOH aq.; 56%;
from (10b): p-TsOH, CgHyg, reflux; 79%; then KOH, MeOH aq.; 62%; ii, Ac,0, reflux; 81% in each series].
The diastereoisomer mixture containing (10b) was carried forward without separation. The less hindered ethyl
ester was reduced chemoselectively!3 [LiBH,, MeOH (1 mol equiv.), EtyO; 83%], the alcohol protected
[dihydropyran, PPTS (0.25 mol equiv.); 93%] and the t-butyl ester reduced (LiAlHy, Et,O, reflux; 93%) to
afford THP-alcohol (9). The sequence developed for protected pentanediol was now applied (Scheme 2).
Oxidation to the aldehyde (3b) (89%), four-carbon chain extension with the methoxybutenyne to produce the
dienal (4c) (58%) and condensation with carbomethoxymethylenetriphenylphosphorane (toluene, reflux; 73%)
or trimethyl phosphonoacetate (K,COj5 aq., 20°C; 82%) afforded the triene ester (5c). Removal of the THP
group to give (6¢) (Amberlite 15, MeOH; 98%) followed by oxidation (PCC, NaOAc; 93%) gave the aldehyde
(7c) from which the cycloaddition substrate (8c) was assembled [dimethy] (2-oxopropyl)phosphonate, K5,CO3
aq., 20°C; 82%]. The ratio of diastereoisomers (5:1 erythro: threo) was unchanged throughout this sequence.

oo THPO

i , i,

Et0,C™\__ i Et0,C i i, v g

nozcj\ ™ ROLC y HO
0

(R= Et, t-Bu) (10) a;R=Et {(9) (11)
b; R=t-Bu

Scheme 3

Reagents:i, LDA, THF-HMPA, -78°C; ii, LiBH,, MeOH-Et,0; iii, dihydropyran, PPTS; iv, LiAlH,, Et,O; v, from (10a):
KOH, MeOH aq.; from (10b): p-TsOH, CGgHg, refiux; then KOH, MeOH aq.; vi, Ac,0, reflux.

The tetraenes (8a-c) underwent cycloaddition either thermally (0.05M in toluene, reflux 20-24h) or with
Lewis-acid catalysis (EtyAICl, CH,Cl,, 20°C, 18h) 14 16 produce the hexahydroindanes (12a-c) as single pure
diastereoisomers after one crystallisation in acceptable yields: (12a) 67% thermally, 63% with E, AICI; (12b)
70 and 61%; (12¢) 51 and 43%. The Lewis-acid procedure, although milder, was less efficient, producing
some tetraene polymerisation; the reduced yields of (12c) relative to (12a,b) are attributed to a separation at this
stage of the 5:1 mixture of erythro- and threo-arrangements of ring A substituents (see above).

The endo-diastereoselectivity of these cycloadditions is well precedented!4+15 and supported by our
spectral data,” e.g. &y for CHCOMe: (12a) 2.87 (1H, dd, 7 11.3 and 6.2 Hz); (12b) 2.88 (1H, dd, J 11 and
6.2 Hz); (12¢) 2.85 (1H, dd, J 11.2 and 6.3 Hz), representing one ‘axial-axial’ and one ‘axial-equatorial’
coupling, not available from any other cycloaddition geometry. The stereochemistry of the ring A substituents
relative to the bridgehead hydrogens has been rationalised and is observed in related cycloadditions.42.b:15

The final part of our strategy towards the intermediate (2) called for elaboration of bicycles (12) from a
ketone to a p-ketoester and an intramolecular Michael addition to form ring C. C-Acylation of the ketone (12a)
was envisaged with a cyanoformate;16 in the event, treatment of the enolate of (12a) [LiNPri,, THF, HMPA (1
mol equiv.), -78°C, 10 min] with benzyl cyanoformate led to the isolation of a single tricyclic compound
(76%) characterised as the octahydroindenof4,5-c]furan (13).7 The p-ketoester from C-acylation is thus under-
going in situ ring closure of its enolate via conjugate addition of the keto oxygen atom in a 5-exo-trig manner
(14). This is isomeric with the desired ring closure through carbon, which may be regarded as a 5-(enol-exo)-
exo-trig (15) or a 5-(enol-endo)-exo-trig (16) process,17 and must be kinetically less favourable.

We have therefore realised the first two parts (conjugate addition-cycloaddition) of our strategy and
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demonstrated that the final conjugate addition takes an alternative kinetic pathway to provide a heterocyclic
isomer of the desired carbotricycle. We are pursuing the use of the indenofuran as a precursor to the required
framework.18 We thank SERC and ICI Agrochemicals for a CASE studentship (R.F.J.) and Dr. M.J. Bushell
for helpful discussions.
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