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In an initial planned foray towards the total synthesis of
schumanniophytine 1,[1] we envisaged (Scheme 1) a concise
route incorporating a double intramolecular reaction

sequence of a remote anionic-Fries rearrangement[2] and a
Michael addition (see intermediate 2). While this concept was
not placed to the test because of our failure to prepare the
requisite precursor 2,[3] model studies on the conveniently
synthesized 2-but-2-ynoyl aryl O-carbamate 4 i (Scheme 2)
led to the discovery of two new anionic aryl O-carbamoyl
rearrangements that give isomeric chromones 5 i and 6 i which
proceed in essentially quantitative yield under standard
conditions mediated by lithium diisopropylamide (LDA)
and lithium 2,2,6,6-tetramethylpiperidide (LTMP), respec-
tively. The original concept aside (Scheme 1), which repre-
sents a successful ortho-Fries/Michael addition reaction (4 i!
6 i, Scheme 2), it was recognized that the chromone hetero-
cycle represents major classes of natural products[4] and is a
key component for a plethora of bioactive molecules,
commercial drugs, and agrochemicals.[5] This realization

gave us impetus to extend these initial studies.[6] Herein we
report the preliminary results of our synthetic and mecha-
nistic findings which demonstrate: a) the preparation of
3- and 8-substituted chromones, systems represented by
bioactive substances 7[7] and 8[8] which are difficult to access
and are related to the important class of antibacterial
4-quinolone drugs ciproflaxacin (9),[9] for which there is a

classical heterocyclic interconversion;[10] b) repetitive metal-
ation reactions which allow the construction of polysubstitut-
ed chromones (Table 1); and c) the intriguing and unprece-
dented involvement of a cumulenolate intermediate of 4 i[11] in
the anionic carbamoyl translocation reaction. Taken together,
this work contributes to the increasing impact of carbanionic-
mediated strategies in synthetic aromatic chemistry. By
adaption of the approach used for the schumanniophytine
alkaloid model compound study (4 i, Scheme 2), a series of
2-but-2-ynoyl aryl O-carbamates 4a–k were prepared[12] and
subjected to the strong base-mediated conditions. The results,
which are summarized in Table 1, merit selected comment.
Complications with the 1,2-addition of LDA to unhindered

Scheme 1. Proposed retrosynthetic analysis of schumanniophytine (1).

Scheme 2. Synthesis of chromone 3-carboxamide 5 i and 8-carbox-
amide 6 i.
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Table 1: Synthesis of chromone 3-carboxamides 5a,c–k and 8-carboxamides 6a,c–f,h–j.

Entry Substrate[a] Base
(equiv)

Product Yield
[%][b]

Entry Substrate[a] Base
(equiv)

Product Yield
[%][b]

1
LTMP
(1.5)

81 13
LTMP
(1.5)

79[f ]

2

LTMP
(1.2)
sBuLi
(2.3)

54[c] 14
LTMP
(1.5)

90

3
LTMP
(1.1)

0 15
LTMP
(5.0)

86

4
LTMP
(2.1)

0 16
LDA
(1.1)

99

5
LTMP
(2.2)

93 17
LTMP
(2.2)

97

6

LTMP
(1.1)
sBuLi
(2.5)

44[c] 18
LTMP
(1.5)

90

7
LTMP
(2.2)

85 19

LTMP
(1.3)
sBuLi
(2.6)

36[c]

8

LTMP
(1.1)
sBuLi
(2.5)

46[c] 20
LTMP
(3.0)

65

9
LTMP
(1.5)

92 21
LTMP
(20)

0

10
LTMP
(3.0)

84

11
LTMP
(1.1)

86

12
LTMP
(2.1)

93

[a] Prepared by DoM of the corresponding aryl O-carbamate. Conditions:
sBuLi (1.2 equiv), �78 8C, 30 min; then MgBr2·OEt2 (2.5 equiv),
�78 8C!0 8C; then N-methoxy-N-methylbut-2-ynamide (1.2 equiv),
0 8C!RT, 2 h; 61–77%. [b] Prepared by DoM of the corresponding aryl
O-carbamate. Conditions: LTMP, �78 8C!RT, 2–12 h. [c] Conditions:
LTMP, �78 8C, 10 min; then sBuLi, �78 8C!RT. [d] Conditions: sBuLi
(1.2 equiv) �78 8C, 30 min; then CuCN·2LiCl (2 equiv), �78 8C, 30 min;
then 2-butynoyl chloride (2 equiv), �78 8C!RT, 1 h; 34–48%. [e] Pre-
pared by metal-halogen exchange from the corresponding aryl bis-
bromide. Conditions: tBuLi (2.1 equiv), �78 8C, 10 min; then
MgBr2·OEt2 (2.5 equiv), �78 8C!0 8C; then N-methoxy-N-methylbut-2-
ynamide (1.2 equiv), 0 8C!RT, 12 h. [f ] LTMP, �78 8C!50 8C, 1 h.
[g] Reaction performed at �100 8C.
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ynones led the use of LTMP, a more hindered base, for the
remaining reactions of derivatives 4a–h, 4j, and 4k. Con-
versions of unsubstituted and methyl-substituted O-carba-
mates 4a, 4c, and 4d (entries 1, 5, and 7) as well as the
methylenedioxy derivative 4j (entry 18) proceed smoothly to
give chromones 5a, 5c, 5d, and 5 j, respectively, under LTMP
conditions. However, their corresponding transformations
into chromones 6a, 6c, 6d, and 6j (entries 2, 6, 8, and 19)
require a sequential LTMP/sBuLi procedure: the second step
with a stronger base was essential to achieve kinetic ortho-
carbamoyl deprotonation to enable an ortho-Fries migrat-
ion.[13] The 3-fluoro compound 4b (entries 3 and 4) failed to
afford chromone 5b or 6b, presumably as a result of
complications arising from benzyne formation.[14] On the
other hand, the lack of such presumed difficulties in the case
of the bromosubstituted 4e is noteworthy:[15] not only is
3-carbamoylchromone 5e (entry 9) obtained efficiently, but a
known lateral metalation/carbamoyl migration[16] gives the
acetamide chromone 6e (entry 10) in high yield. The chloro
O-carbamates 4 f and 4g, which were expected to cause less
concern with respect to benzyne formation, smoothly under-
went the isomeric carbamoyl transfer/Michael cyclization
reactions to afford the expected products 5 f, 6 f, and 5g
(entries 11–13), respectively. Methoxy aryl O-carbamate 4h
(entry 15) required increased concentrations of LTMP
(5 equiv) to favor formation of 6h, presumably as a result of
coordination and competitive directed ortho-metalation
(DoM) arising from the presence of the OMe group.[17] The
original test substrate 4 i (entries 16 and 17) benefits from
synergistic DoM[18] to give 5 i and 6 i in the best overall yields
for this general route. The biaryl O-carbamate 4k (entry 20)
furnishes the 8-aryl chromone 5k, which is structurally related
to several naturally occurring[19] and synthetic[20] antitumor
agents. Structural differences notwithstanding, the unsuccess-
ful conversion of 4k (entry 21) into 6k is indicative of the
difficulties in proving that the (original untested concept)
formation of 2 is a key step in the synthesis of schumannio-
phytine (1).[1]

The evidence that the formation of the C8 carbanion was
possible under sBuLi conditions (entries 2, 6, ,8, and 19)
prompted us to investigate trapping experiments with other
electrophiles at low temperatures. Thus, using sequential
LTMP/sBuLi metalation of unsubstituted 2-but-2-ynoyl
phenyl O-carbamate (4a ; Scheme 3) followed by TMSCl
and MeSSMe treatment led to the formation of 8-silyl- and
8-thiomethylchromones 5 l and 5m, respectively, in modest
overall yields.

The availability of the new 8-carbamoylchromones 6
inspired us to perform additional DoM reactions. Thus,
treatment of 6a (Scheme 4) with LHMDS, to necessarily

effect the formation of a protected dienolate,[21] followed by
DoM and treatment with B(OMe)3 afforded the 7-borylated
chromone, which was immediately subjected to modern
Suzuki cross-coupling conditions[22] to furnish the 7-(4-fluo-
rophenyl)chromone 10 in reasonable yield. To provide
regiochemical complementarity, advantage was taken of the
substituent effects from the C�H activation/borylation route
by using B2pin2 in the presence of an iridium catalyst.[23] Thus,
subjecting 6a to one-pot borylation/Suzuki cross-coupling
conditions[24] afforded isomeric 6-(4-fluorophenyl)chromone
11 in very good yield.

A mechanistic study of the LDA-mediated reaction was
undertaken on the high-yielding conversion of 4 i into [D]-5 i
(Scheme 5). First, treatment of 4 i with LDA (1.1 equiv) at
�78 8C for 1 hour and subsequent trapping with AcOH and
AcOD at �78 8C gave the 1,2-dienones (a-allenyl ketones)
[H]-13 and [D]-13, respectively in reasonable yields (21%
monodeuterium incorporation was determined by 1H NMR
spectroscopy). This result confirms the generation of the
kinetic cumulenolate intermediate 12 and its a-carbonyl
protonation, in agreement with previous experimental and
semiempirical calculations (MNDO).[25] Treatment of 4 i with
LDA (1.1 equiv, �78 8C, 20 min) followed by quenching with
MeOH at �78 8C gave (2E)-aryl-3-methoxy-but-2-en-1-one
15 (confirmed by NOE experiments), which is the expected
thermodynamically stable diastereomer resulting from
a-carbonyl protonation and 1,4-addition of the generated
methoxide.[26,27] Allowing the cumulenolate 12 to warm to
room temperature to promote carbamoyl transfer resulted in
the appearance of a deep red solution indicative of the
formation of the lithium dienolate 16 ; this was confirmed by
the rapid disappearance of color upon treatment with AcOD
to give a clear solution and a high yield of [D]-5 i (> 95%
deuterium incorporation was determined by 1H NMR spec-

Scheme 3. One-pot DoM/chromone 3-carboxamide synthesis.
Reagents and conditions: LTMP (1.3 equiv), THF, �78 8C, 10 min;
then sBuLi (2.5 equiv), �78 8C, 30 min; then E=TMSCl or MeSSMe
(2.5 equiv), �78 8C!RT, 2 h. TMS= trimethylsilyl.

Scheme 4. Differential borylation and arylation of chromone 6a.
Reagents and conditions: a) LHMDS (1.5 equiv), THF, �78 8C, 10 min;
then TMEDA (3 equiv), sBuLi (3 equiv), �78 8C, 30 min; then B(OMe)3
(4 equiv), �78 8C, 1 h; b) [Pd2(dba)3] (0.01 equiv), S-Phos (0.02 equiv),
1-bromo-4-fluorobenzene (1.1 equiv), K3PO4 (2 equiv), PhMe, 100 8C,
2 h; c) [Ir(OMe)(cod)]2 (0.02 equiv), dtbpy (0.04 equiv), B2pin2

(0.6 equiv), hexanes, 80 8C, 18 h; d) [Pd(PPh3)4] (0.02 equiv), 1-bromo-
4-fluorobenzene (1.1 equiv), Na2CO3 (10 equiv), DME/H2O (4:1),
80 8C, 4 h. LHMDS= lithium hexamethyldisilazide, TME-
DA= N,N,N’,N’-tetramethylethylenediamine, dba=dibenzylideneace-
tone, S-Phos=dicyclohexylphosphino-2’,6’-dimethoxy-1,1’-biphenyl,
cod=1,5-cyclooctadiene, dtbpy=4,4’-di-tert-butyl-2,2’-bipyridyl,
B2pin2 =bis(pinacolato)diboron, DME=1,2-dimethoxyethane.

Angewandte
Chemie

2099Angew. Chem. Int. Ed. 2008, 47, 2097 –2101 � 2008 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim www.angewandte.org

http://www.angewandte.org


troscopy). This result suggested a reaction pathway which
proceeds via the buta-2,3-dienamide 14 followed by intra-
molecular Michael addition of the resulting phenolate and
then protonation to give the chromone product 5 i.[28] As
suggested by the need for additional amounts of base for
effective conversion of 4 into 6 (Table 1), this reaction may
also involve the cumulenolate 12, which undergoes anionic
ortho-Fries rearrangement followed by protonation and
Michael addition, although evidence for this suggestion is
currently unavailable.

In conclusion, new general and regioselective syntheses of
chromone derivatives 5 and 6 by anionic carbamoyl translo-
cation reactions have been developed. The reactions, which
involve sequential intramolecular anionic ortho-Fries rear-
rangement and Michael addition that proceed, as suggested
by mechanistic studies (Scheme 5), via an intriguing cumul-
enolate 12, provide routes to chromones which show uncom-
mon and difficult to access C8 substitution[7] as well as
common and biologically significant[8,9] 3-substitution pat-
terns. The DoM reactions (Scheme 3) as well as the comple-
mentary ortho- and iridium catalyzed meta-borylation and
Suzuki cross-coupling chemistry (Scheme 4) provide added
conceptual and practical value for heterocyclic synthesis. As a
proposed tenet, in juxtaposition with BrBnsted or Lewis acid-
mediated electrophilic substitution, this study and related
aromatic carbanionic reactions[18] offer advantages for allow-
ing the introduction of varied substituents under mild
conditions with regiochemical control. Potentially of more
general significance, the observation of cumulenolate 12,
which represents a rarely studied species,[25] provides impetus
for increased attention in the synthesis of cumulenes and
allenes,[11] especially in view of recent developments in
transition metal catalyzed reactions.[11]
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