Contents lists available at ScienceDirect

Bioorganic & Medicinal Chemistry Letters

journal homepage: www.elsevier.com/locate/bmcl

Tetrahydroquinoline derivatives as CRTH2 antagonists

Jiwen Liu*, Yingcai Wang, Ying Sun, Derek Marshall, Shichang Miao, George Tonn, Penny Anders, Joel Tocker, H. Lucy Tang, Julio Medina

Amgen Inc., 1120 Veterans Boulevard, South San Francisco, CA 94080, USA

ARTICLE INFO

ABSTRACT

Article history: Received 22 September 2009 Revised 20 October 2009 Accepted 21 October 2009 Available online 25 October 2009

Keywords: CRTH2 PGD2 Antagonists GPCR Allergic diseases Tetrahydroquinoline SAR Lead optimization

CRTH2 (chemoattractant receptor-homologous molecule expressed on Th2 cells), also known as DP₂, is a G-protein coupled receptor related to the N-formyl peptide receptor (FPR) subfamily of chemoattractant receptors. Its endogenous ligand is prostaglandin D₂ (PGD₂). PGD₂ is the major cyclooxygenase product formed and secreted by activated mast cells during allergic reactions.^{1–3} PGD_2 also signals through prostanoid D (DP or DP₁) receptor. The DP receptor is primarily expressed on airway epithelium, smooth muscle and platelets, while CRTH2 is selectively expressed on Th2 cells, T cytotoxic type 2 (Tc2) cells, eosinophils, and basophils.⁴⁻⁶ Stimulation of CRTH2 by PGD₂ mediates multiple inflammatory responses, such as chemotaxis of eosinophils, basophils and Th2 cells, eosinophil activation and degranulation, cytokine production from Th2 T cells, and leukotriene production by mast cells.^{7–13} Therefore, blockade of CRTH2 is likely to be beneficial in the treatment of allergic diseases triggered by PGD₂.

Several research groups, including ours, discovered that tetrahydroquinoline derivatives are potent CRTH2 antagonists.^{14–19} These compounds were of special interest to us, because to our knowledge, it was the only series of CRTH2 antagonists devoid of a carboxylic acid moiety. Here we report the discovery, optimization and structure activity relationship (SAR) of the tetrahydroquinoline derivatives.

* Corresponding author. *E-mail address:* jiwenl@amgen.com (J. Liu). Tetrahydroquinoline **1** (Table 1), discovered in a high throughput screen, inhibited the binding of ³H-PGD₂ to hCRTH2 receptors on 293 cells with an IC₅₀ of 0.043 μ M (Table 1).²⁰ Compound **1** also inhibited CRTH2 mediated cell migration in response to PGD₂ with an EC₅₀ of 11 nM using hCRTH2 stably transfected CEM cells.²¹ The

A series of tetrahydroquinoline-derived inhibitors of the CRTH2 receptor was discovered by a high

throughput screen. Optimization of these compounds for potency and pharmacokinetic properties led

Table 1

to the discovery of potent and orally bioavailable CRTH2 antagonists.

Compd	Chiral Center	CRTH2 IC_{50}^{a} in buffer (μM)	CRTH2 IC ₅₀ ª in plasma (µM)
1 2 1a ^b 1b ^b	Racemic Racemic (2 <i>S</i> ,4 <i>R</i>) (2 <i>R</i> ,4 <i>S</i>)	0.043 >10 0.017 0.42	1.05 0.44 >10

^a Displacement of ³H-PGD₂ from the CRTH2 receptor expressed on 293 cells. Assay run in buffer containing 0.5% BSA or in 50% plasma. See Ref. 20 for assay protocol. Values are means of three experiments, standard deviation is $\pm 30\%$. ^b ee >99%.

© 2009 Elsevier Ltd. All rights reserved.

⁰⁹⁶⁰⁻⁸⁹⁴X/\$ - see front matter \odot 2009 Elsevier Ltd. All rights reserved. doi:10.1016/j.bmcl.2009.10.094

structure of compound **1** was determined to be *cis* by synthesis²² (Scheme 1) and NMR studies.²³ Conversely, the *trans* isomer (**2**) had weak CRTH2 activity. Furthermore, the stereo-selective synthesis (Scheme 2) indicated the (2*S*,4*R*) enantiomer **1a** was responsible for the majority of the CRTH2 activity of racemic compound **1** (Table 1).

Compound **1** was synthesized according to Scheme 1. Reaction of aniline with acetaldehyde in ethanol at room temperature afforded a mixture of *cis–trans* isomers **3a** and **3b** in >95% yield. Separation of the *cis* isomers **3a** was achieved in 35% yield by recrystallization from 10% EtOAc/Hex. The *trans* isomer **3b** was obtained in 30% yield from the purification of the mother liquor using silica column chromatography. Selective acylation of **3a** and **3b** with benzoyl chloride at 1-N position afforded amides **4a** and **4b**, respectively, in 90% yield. Reaction of **4a** and **4b** with acetyl chloride afforded **1** and **2**, respectively, in 85% yield. Compounds **5–14** (Table 2) were synthesized from *cis* intermediate **4a** using reductive amination, sulfonylation or acylation.

Scheme 1. Racemic synthesis of 1, 2 and 5–14. Reagents and conditions: (a) EtOH, rt, 24 h, 35% for compound 6 after recrystallization in 10% EtOAc/hexanes; (b) PhCOCI, triethylamine, DCM, rt, 24 h, 90%; (c) for amines: aldehydes, Na(OAc)₃BH, ClCH₂CH₂CI, rt, 20 h, ~80%; for sulfonamides: sulfonyl chloride, DMAP, pyridine, rt, 3 h, 60%; for amides, acid chlorides, NaH, THF, rt, 20 h, 85%.

Scheme 2. Stereo-selective synthesis of **1a**. Reagents and conditions: (a) Cul, potassium carbonate, DMF, water, 90 °C, 48 h, 70%; (b) SOCl₂, MeOH, rt, 12 h, 90%; (c) PhCOCl, triethylamine, DCM, rt, 24 h, 90%; (d) LiOH, THF/MeOH/water, rt 4 h, 95%; (e) oxalyl chloride, DMF, DCM, 0 °C-rt, 3 h, then AlCl₃, DCM, 0 °C-rt, 12 h, 60%; (f) ammonium acetate, sodium cyanoborohydride, MeOH, 70 °C, 2 days, 85%; (g) phenyl boronic acid, pyridine, DMF, copper(II) acetate, air, 60 °C, overnight, 20%; (h) acetyl bromide, NAH, THF, 0 °C-rt, 3 h, 85%.

Table 2

Compd ^a	R	CRTH2 IC_{50}^{b} in buffer (μM)
1	-COMe	0.043
4a	-H	>50
5	-CH ₂ CH ₃	3.17
6	-SO ₂ Ph	5.50
7	–COPh	0.105
8	$-CO(CH_2)_3CH_3$	0.064
9	$-CO(CH_2)_2CO_2H$	0.005
10	$-CO(CH_2)_2CO_2NH_2$	0.029
11	-COCH ₂ CO ₂ H	0.54
12	$-CO(CH_2)_3CO_2H$	0.022
13	-COCH=CHCO ₂ H	2.28
14	-CO(1,3-Ph)CO ₂ H	40.3

^a Mixture of racemic mixture of (2*S*,4*R*) and (2*R*,4*S*) enantiomers.

^b Displacement of ³H-labeled PGD₂ from the CRTH2 receptor expressed on 293 cells. See Ref. 20 for assay protocol. Values are means of three experiments, standard deviation is $\pm 30\%$.

The stereo-selective synthesis (Scheme 2) of **1a** began with a Cul catalyzed coupling of iodobenzene with the (*S*)- β -amino acid ester.²⁴ Amide formation of the coupling product (**15**) with benzoyl chloride followed by ester hydrolysis yielded acid **16**. Conversion of the carboxylic acid to the acid chloride followed by an intramolecular Friedel–Crafts acylation provided ketone **17**.²⁵ Reductive amination with ammonium hydroxide produced primary amine **18a**, which was coupled with phenyl boronic acid in the presence of copper acetate to give compound **19**.¹⁴ Reaction of **19** with acetyl bromide afforded compound **1a** ((*2S*,*4R*)-enantiomer) with >99% ee. Compound **1b** ((*2R*,*4S*)-enantiomer) was obtained from chiral HPLC separation of racemate **1**.²⁶

Compounds **22**, **24** and **25** (Table 3) were synthesized according to Scheme 3. Reductive amination of ethyl acetoacetate with aniline afforded ester **20**. Saponification of **20** followed by intramolecular Friedel–Crafts acylation afforded ketone **21**.²⁷ Amide formation with benzoyl chloride followed by a reductive amination yielded compound **18**. Finally, compound **22** was obtained from acetamide formation of **18** with acetyl bromide. Compounds **24**

Table 3

Compd ^a	R	CRTH2 IC_{50}^{b} in buffer (μM)	
1	Ph	0.043	
22	Н	3.62	
24	Et	0.25	
25	Bn	0.43	

^a Mixture of racemic mixture of (2*S*,4*R*) and (2*R*,4*S*) enantiomers.

^b Displacement of ³H-labeled PGD₂ from the CRTH2 receptor expressed on 293 cells. See Ref. 20 for assay protocol. Values are means of three experiments, standard deviation is $\pm 30\%$.

Scheme 3. Racemic synthesis of **22** and **24–25**. Reagents and conditions: (a) $Na(OAc)_3BH$, HOAc ClCH₂CH₂Cl, rt, 2 h, ~80%; (b) LiOH, THF/MeOH/water, rt 4 h, 95%; (c) PPA, 110 °C, 6 h, 50%; (d) PhCOCl, triethylamine, DCM, rt, overnight, 90%; (e) ammonium acetate, sodium cyanoborohydride, MeOH, 70 °C, 2 days, 85%; (f) aldehydes, $Na(OAc)_3BH$, ClCH₂CH₂Cl, rt, 2 h, 85%; (g) acetyl bromide, triethylamine, DCM, rt, overnight, 88%.

and **25** were obtained from reductive amination of **18** with the appropriate aldehydes followed by acetamide formation.

Compound **28** was a key intermediate needed to enable facile exploration of the 1-*N* position of tetrahydroquinoline **1** (Table 4 and 5). Synthesis of **28** started with the protection of **3a** at 1-*N* position by Cbz to give carbamate **26** (Scheme 4). Acetamide formation (**27**) and removal of Cbz delivered **28**. Final derivatization (reductive amination, sulfonylation or acylation) at 1-*N* position afforded compounds **29–42**.

The lead optimization was guided by ³H-PGD₂ displacement assays using hCRTH2 stably transfected 293 cells in buffer solution and plasma.²⁰ We evaluated most compounds as racemic mixtures and only resolved the enantiomers for compounds of interest.

Modification of the acetyl group of the 4-phenylamino of **1** showed that amides (e.g., **1**, **7** and **8**) were preferred over secondary amine **4a**, tertiary amine **5** and sulfonamide **6** (Table 2). A 3carboxylpropionyl group significantly increased the binding affinity (**9**). The corresponding amide (**10**) of carboxylic acid **9** was less potent. The optimal distance between the acid and the amide car-

Table 4

Compd ^a	R	CRTH2 IC_{50}^{b} in buffer (μ M)
1	-COPh	0.043
28	-H	>50
29	-CH ₂ Ph	0.20
30	-SO ₂ Ph	62
31	-COCH ₂ Ph	1.75
27	-COOCH ₂ Ph	0.91
32	-COCH=CHPh	0.21
33	$-CO(CH_2)_3CH_3$	1.46

^a Mixture of racemic mixture of (2*S*,4*R*) and (2*R*,4*S*) enantiomers.

^b Displacement of ³H-PGD₂ from the CRTH2 receptor expressed on 293 cells. See Ref. 20 for assay protocol. Values are means of three experiments, standard deviation is ±30%.

bonyl is two carbons, as in compound **9**. Either shortening (**11**) or extending the distance (**12**) decreased the CRTH2 activity. The activity is also sensitive to the composition of the linker between the acid and the amide. Other linkers, such as *trans* acetylene (**13**) and 1,3-phenylene (**14**), significantly reduced the binding affinity compared to the ethylene linker (**9**).

The aniline moiety at the 4-position of the tetrahydroquinoline core was studied briefly (Table 3). It was found that replacement of the *N*-phenyl of **1** by a hydrogen (**22**) or a small alkyl group (**24**), or extension of the phenyl by one methylene (**25**) all significantly decreased the CRTH2 activity.

Variation at 1-*N* position of the tetrahydroquinoline core (Table 4) demonstrated that a bulk at 1-*N* position was required for activity, as the compound (**28**) with no attachment at the position had little affinity for the CRTH2 receptor. In addition, the carbonyl of the benzoyl group (**1**) was preferred over a methylene (**29**) and a sulfonyl group (**30**). Extending the benzene of the benzoyl group from the carbonyl (**1**) by one or two atoms (**27**, **31** and **32**) resulted in decrease of the CRTH2 activity. The medium size *n*-alkyl amides, such as *n*-butyl amide (**33**), were also not as potent as the parental compound (**1**).

Table 5

Compd ^a	R	CRTH2 IC_{50}^{b} in buffer (μM)	
1	Н	0.043	
34	2-Me	1.42	
35	3-Me	0.074	
36	4-Me	0.041	
37	3,4-Me	0.092	
38	4-OMe	0.028	
39	4-Cl	0.093	
40	4-tBu	0.034	
41	4-0CF ₃	0.026	
42	4-OPh	0.013	

^a Mixture of racemic mixture of (2S,4R) and (2R,4S) enantiomers.

^b Displacement of ³H-IPGD₂ from the CRTH2 receptor expressed on 293 cells. See Ref. 20 for assay protocol. Values are means of three experiments, standard deviation is ±30%.

Scheme 4. Racemic synthesis of **27–42**. Reagents and conditions: (a) Benzyl chloroformate, potassium carbonate, acetone, 55 °C, 5 h, 87%; (b) acetyl bromide, NaH, THF, 0 °C–rt, 3 h, 85%; (c) H₂, Pd/C, EtOH, rt, 1 h, 100%; (d) for amines: aldehydes, Na(OAc)₃BH, ClCH₂CH₂Cl, rt, 20 h, ~80%;%; for sulfonamides: sulfonyl chloride, DMAP, pyridine, rt, 3 h, 60%; for amides, acid chlorides, NaH, THF, rt, 20 h, 85%.

The substitution effect on the phenyl ring of the 1-*N* benzoyl moiety is shown in Table 5. Compounds with methyl substitution at the *para* and *meta* positions (**36** and **35**) displayed better potency than the *ortho*-substituted analog (**34**). 3,4-Dimethyl compound (**37**) was similar in potency to that of mono *para* or *meta*-methyl compounds (**36** and **37**). In general, substitutions at the *para*-position afforded compounds with good CRTH2 binding affinity regardless of electronic and steric effects (**36**, **38–42**). Some substitutions, such as phenoxy (**42**), methoxy (**38**) and trifluoromethoxy (**41**), at the *para*-position yielded more potent compounds compared to the unsubstituted compound (**1**).

Based partially on their binding affinity, compounds **9**, **38** and **41** were selected and resolved by chiral HPLC and each enantiomer was evaluated (Table 6). Like compound **1**, the (2S,4R) enantiomers had greater affinity for the CRTH2 receptor. Even in the presence of

Table 6

Compd	R ¹	R ²	CRTH2 IC ₅₀ ^a in buffer (µM)	CRTH2 IC ₅₀ ª in plasma (µM)
9 racemic 9a (2 <i>S</i> ,4 <i>R</i>) ^b 9b (2 <i>R</i> ,4 <i>S</i>) ^b 38 racemic 38a (2 <i>S</i> ,4 <i>R</i>) ^b	-CO(CH ₂) ₂ CO ₂ H -CO(CH ₂) ₂ CO ₂ H -CO(CH ₂) ₂ CO ₂ H CH ₃ CH ₃	H H OMe OMe	0.005 0.003 0.40 0.028 0.015	0.028 0.009 >10 0.13 0.039
38b (2 <i>R</i> ,4 <i>S</i>) ^b 41 racemic 41a (2 <i>S</i> ,4 <i>R</i>) ^b 41b (2 <i>R</i> ,4 <i>S</i>) ^b	CH₃ CH₃ CH₃ CH₃	OMe OCF ₃ OCF ₃ OCF ₃	0.40 0.026 0.025 0.217	>10 0.18 0.106 >10

^a Displacement of ³H-PGD₂ from the CRTH2 or DP receptors expressed on 293 cells. Assay run in buffer containing 0.5% BSA or in 50% plasma. See Ref. 20 for assay protocol. Values are means of three experiments, standard deviation is \pm 30%.

^b Stereochemistry assigned based on the retention times of chiral HPLC compared to **1a** and **1b** and CRTH2 activities, ee >99%.

Table 7

Compd	R ¹	R ²	Eosinophil Shape Change ^a IC ₅₀ (nM)	$DP \ IC_{50}{}^{b} \left(\mu M \right)$
1a ^c 9a ^d 38a ^d 41a ^d	CH ₃ -CO(CH ₂) ₂ CO ₂ H CH ₃ CH ₃	H H OMe OCF ₃	141 0.77 49.3 48.8	>10 >10 >10 >10 >10

^a PGD₂-mediated human eosinophil shape change assay. See Ref. 28 for assay protocol. Values are means of two experiments.

^b Displacement of ³H-labeled PGD₂ from the DP receptors expressed on 293 cells. Assay run in buffer containing 0.5% BSA. See Ref. 29 for assay protocol. Values are means of three experiments, standard deviation is ±30%.

^c Stereochemistry determined by synthesis (Scheme 2), ee >99%.

^d Stereochemistry assigned based on the retention times of chiral HPLC compared to **1a** and **1b** and CRTH2 activities., ee >99%.

plasma, these (2*S*,4*R*) enantiomers displayed strong inhibitory activity for the CRTH2 receptor.

In addition to having high affinity for the CRTH2 receptor, these compounds are also potent functional antagonists. Compounds **1a**, **9a**, **38a** and **41a** were potent inhibitors of PGD₂-mediated human eosinophil shape change²⁸ (Table 7). In particular, compound **9a** had an IC₅₀ of 0.77 nM. The affinity of these compounds for the DP receptor was evaluated with a ³H-PGD₂ displacement assay using 293 cells stably transfected with hDP receptor. These compounds were found to be selective for the CRTH2 receptor over DP.

The pharmacokinetics properties of compound **41a** were evaluated in male Sprague Dawley rats following IV (0.7 mg/kg) and oral (2.0 mg/kg) dosing. The total body clearance and the terminal halflife were 0.73 L/h/kg and 5.1 h, respectively. After oral administration the compound showed good bioavailability (38%) following administration of a solution formulation (1 mL/kg; 10% ethanol:90% PEG400).

In summary, we have discovered and optimized a series of tetrahydroquinoline derivatives as potent CRTH2 antagonists with selectivity over DP. Furthermore, we have identified compound **41a** as a potent CRTH2 antagonist with good pharmacokinetic properties rendering it a useful tool compound for in vivo studies of CRTH2 functions.

References and notes

- 1. Lewis, R. A.; Soter, N. A.; Diamond, P. T.; Austen, K. F.; Oates, J. A.; Roberts, L. J. J. Immunol. 1982, 129, 1627.
- Holgate, S. T.; Burns, G. B.; Robinson, C.; Church, M. K. J. Immunol. 1984, 133, 2138.
- Gundel, R. H.; Kinkade, P.; Torcellini, C. A.; Clarke, C. C.; Watrous, J.; Desai, S.; Homon, C. A.; Farina, P. R.; Wegner, C. D. *Am. Rev. Respir. Dis.* **1991**, 144, 76.
- Nagata, K.; Hirai, H.; Tanaka, K.; Ogawa, K.; Aso, T.; Sugamura, K.; Nakamura, M.; Takano, S. FEBS Lett. 1999, 459, 195.
- Nagata, K.; Tanaka, K.; Ogawa, K.; Kemmotsu, K.; Imai, T.; Yoshie, O.; Abe, H.; Tada, K.; Nakamura, M.; Sugamura, K.; Takano, S. *J. Immunol.* **1999**, *162*, 1278.
 Cosmi, L.: Annunziato, F.; Galli, M. I. G.; Maggi, R. M. E.; Nagata, K.; Romagnani,
- Cosmi, L.; Annunziato, F.; Galli, M. I. G.; Maggi, R. M. E.; Nagata, K.; Romagnani, S. *Eur. J. Immunol.* **2000**, *30*, 2972.
 Miadonna, A.; Tedeschi, A.; Brasca, C.; Folco, G.; Sala, A.; Murphy, A. J. Allergy
- Clin. Immunol. **1990**, 85, 906.
 Turner, N. C.; Fuller, R. W.; Jackson, D. M. J. Lipid. Mediators Cell Signalling **1995**,
- Tarner, N. C., Funer, K. W., Jackson, D. M. J. Lipla. Intention Cent Signaturing 1393, 11, 93.
 Hirai H. Tanaka K. Yoshie O. Ogawa K. Kenmotsu K. Takamori Y.
- Hirai, H.; Tanaka, K.; Yoshie, O.; Ogawa, K.; Kenmotsu, K.; Takamori, Y.; Ichimasa, M.; Sugamura, K.; Nakamura, M.; Takano, S.; Nagata, K. J. Exp. Med. 2001, 193, 255.
- Sugimoto, H.; Shichijo, M.; Iino, T.; Manabe, Y.; Watanabe, A.; Shimazaki, M.; Gantner, F.; Bacon, K. B. J. Pharmacol. Exp. Ther. 2003, 305, 347.
- 11. Monneret, G.; Gravel, S.; Diamond, M.; Rokach, J.; Powell, W. S. *Blood* **2001**, *98*, 1942.
- Gosset, P.; Bureau, F.; Angeli, V.; Pichavant, M.; Faveeuw, C.; Tonnel, A. B.; Trottein, F. J. Immunol. 2003, 170, 4943.
- Liu, J.; Fu, Z.; Wang, Y.; Schmitt, M.; Huang, A.; Marshall, D.; Tonn, G.; Seitz, L.; Sullivan, T.; Tang, H. L.; Collins, T.; Medina, J. *Bioorg. Med. Chem. Lett.* **2009**. doi:10.1016/j.bmcl.2009.09.052.
- 14. Ghosh, S.; Elder, A. M.; Carson, K. G.; Sprott, K.; Harrison, S. WO Patent 032848, 2004.
- Ghosh, S.; Elder, A. M.; Carson, K. G.; Sprott, K.; Harrison, S. J.; Hicks, F. A.; Renou, C. C.; Reynolds, D. WO Patent 100321, 2005.
- Kuhn, C.; Feru, F.; Bazin, M.; Awad, M.; Goldstein, S. W. EP Patent 1413306, 2004.
- 17. Kotera, O.; Oshima, E.; Ueno, K.; Ikemura, T.; Manabe, H.; Sawada, M.; Mimura, H.; Miyaji, H.; Nonaka, H. WO Patent 052863, 2004.
- 18. Inman, W.; Liu, J.; Medina, J. C.; Miao, S. WO Patent 007094, 2005.
- Mimura, H.; Ikemura, T.; Kotera, O.; Sawada, M.; Tashiro, S.; Fuse, E.; Ueno, K.; Manabe, H.; Ohshima, E.; Karasawa, A.; Miyaji, H. J. Pharmacol. Exp. Ther. 2005, 314, 244.
- 20. The CRTH2 radioligand binding assay was performed on 293 cells stably expressing human CRTH2. To measure binding, [³H]-PGD₂ was incubated together with 293(hCRTH2) cells in the presence of increasing concentrations of compounds. After washing, the amount of [³H]-PGD₂ that remained bound to the cells was measured by scintillation counting and the concentration of compounds required to achieve a 50% inhibition of [³H]-PGD₂ binding (the IC₅₀) was determined. The binding buffer contains either 0.5% BSA (buffer binding) or 50% human plasma (plasma binding).
- 21. CRTH2 mediated cell migration was analyzed in a transwell migration assay using hCRTH2 stably transfected CEM cells (a T lymphoblast cell line). The cells were incubated with increasing concentrations of compounds for 3 h in a 96well migration chamber on top of a transwell filter and the number of cells

migrating through the filter in response to PGD₂ was counted and the IC₅₀ of the compounds determined.

- 22 Forrest, T. P.; Dauphinee, G. A.; Miles, W. F. Can. J. Chem. 1974, 52, 884.
- 23. Funabashi, M.; Iwakawa, M.; Yoshimura, J. Bull. Chem. Soc. Jpn. 1969, 42, 2885. Ma, D.; Xia, C. Org. Lett. 2001, 3, 2583.
- 24. 25.
- Ma, D.; Xia, C.; Jiang, J.; Zhang, J.; Tang, W. J. Org. Chem. 2003, 68, 442. Chiral HPLC conditions: column: ChiralPak AD-H, 20 × 250 mm; solvents: 40% 26. isopropanol/hexanes; flow rate: 20 mL/min.
- 27. Zhi, L.; Tegley, C. M.; Marschke, K. B.; Jones, T. K. Bioorg. Med. Chem. Lett. 1999, 9, 1009.
- Enriched human eosinophils were resuspended at a concentration of 10⁶ cells/ mL in assay buffer (PBS with Ca²⁺/Mg²⁺, 0.1% BSA, 10 mM Hepes, and 10 mM glucose). Eosinophils were incubated with antagonists or vehicle (0.05% DMSO) for 10 min at room temperature and subsequently stimulated with 10nM PGD₂

or vehicle for 10 min at 37 °C. Cells were immediately fixed with 1% paraformaldehyde. Samples were immediately analyzed on a FACSCalibur flow cytometer (BD Biosciences, San Jose, CA). Live cells were gated using forward/side scatter parameters. Five thousand gated live events were acquired. Shape change responses were quantified as a percentage of the maximal PGD₂ response. CAY-10471 was used as a positive control. Its average IC₅₀ in the two experiments was 0.20 nM.

29. The DP radioligand binding assay was performed on 293 cells stably expressing human DP. To measure binding, [3H]-PGD2 was incubated together with 293(hDP) cells in the presence of increasing concentrations of compounds. After washing, the amount of [³H]-PGD₂ that remained bound to the cells was measured by scintillation counting and the concentration of compounds required to achieve a 50% inhibition of $[^{3}H]$ -PGD2 binding (the IC_{50}) was determined. The binding buffer contains either 0.5% BSA (buffer binding).