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Abstract:  5'-Deoxy-5'-fluoro-O4-methylthymidine was synthesized by the reaction of the corresponding 5'-O- 
tosylate with KF in the presence of Kryptofix [222] and coupled to a 5'-phosphoramidite-activated CPG-bound 
oligodeoxynucleotide. The sequence of reactions and purifications were accomplished within 4 h, a necessary 
condition of the development of radiofluorinated antisense oligodeoxynucleotide probe for use with PET. 
© 1998 Elsevier Science Ltd. All rights .reserved. 

Recent years have seen dramatic developments in the application of synthetic antisense 

oligodeoxynucleotides (ODNs) as inhibitors of specific disease-related gene expression. 2'3 The antisense approach 

has also preliminarily been explored to develop new biological probes for in vivo imaging of specific gene 

expression. Gamma-emitting 11~In- and S°mTc-labeled antisense ODNs have been recently synthesized for use 

with single photon emission computed tomography (SPECT) imaging. 4 However, labeling with these radioactive 

metals requires a sterically bulky chelating group that might alter the binding affinity as well as cellular transport 

and distribution of the parent ODNs. In addition, SPECT has a lower resolution than positron emission 

tomography (PET) (8-12 mm vs. 2--6 mm, respectively). Furthermore, as compared with SPECT, PET allows 

for greater quantitative accuracy that is essential for developing a quantitative in vivo imaging assayP Therefore, 

we ~ and others 6 have been exploring the development of the antisense ODN probes labeled with positron emitting 

fluorine-18 to image the biodistribution of ODNs and specific gene expression using PET. Fluorine-18 (96.9% 

[~÷ emission), due to its close isosteric relationship with hydrogen, 7 offers a suitable altemative to mimic the 

biological behavior of the parent ODN. In this communication we report a rapid synthesis of 5'-fluoro-ODN that 

should be applicable for use with radiolabeled fluorine. The target antisense ODN is a 10-met, d[C CGC CAG 

CTC], complementary to the 5' translation start region of the her-2-neu proto-oncogene mRNA. s A high affinity 

is essential for the detection of an amplified oncogene mRNA that is present with a Bmax in the range of 1-1000 

pM. 9 It has been reported that a deca-ribonucleotide binds to a single-stranded region of its complementary 

mRNA with affinity constants in the range of 0.01-0.1 pMJ ° In addition, a stretch of 10 nucleotide bases and 

high order structure requirements of hybridization should be enough to provide a high binding selectivity. H It is 

therefore conceivable that the antisense probe may detect even the lower level of target mRNA with a signal to 

noise ratio o f -  10:1 (based on the ratio of Bmax to Kd at equilibrium). We have decided to use [18F]fluoride and 

introduce it to the 5'-end of the above ODNs for the following reasons: (1) a compound with high specific activity 

(-10-~-104 Ci/mmol) can be attained with [~SF]fluoride,~2 which is neccesary for detecting relatively low levels of 

target mRNA; (2) the 5'-deoxy-5'-fluoro analogue of nucleoside has been shown to be stable under physiological 

condition; t3 (3) a fluorine-18 labeled nucleoside is introduced in the last step avoiding an extra radiation-exposure 

time and dilution of radioactivity; and (4) the half-life of ~SF is likely sufficient for kinetic determination of 

transport and specific binding as well as clearance of the unbound ODN.t4 
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Scheme 1. Reagents: (i) KF/Kryptofix-[222], MeCN, 120 °C, t5. 
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Scheme 2. Reagents: (i) (1) TsCI, Py; (2) Ac20, Py; (ii) (1) KF/Kryptofix-[222], MeCN, 100 °C, 15 min; (2) conc 
NH4OH, I00 °C, 15 min; (3) C,8-HPLC, MeOH:H20 (40:60). 

A number of elegant approaches to synthesize fluorinated nucleosides and nucleotides have been 

described.15 In addition, a wide variety of reagents for fluorination are currently available.16 Among these methods 

and reagents, only a few can be adapted to the specific constraints of ~SF-chemistry. These included the need to 

complete a series of reactions within 2-3 half-lives, after cyclotron production of the radionuclide, and the use of a 

large amount of radioactivity (~1 Ci) to compensate for radioactive decay and synthetic yields./7 Our synthetic 

strategy is comprised of two key steps: synthesis of a 5'-deoxy-5'-fluoro-nucleoside followed by its incorporation 

into a CPG-bound ODN by the reverse-activation method introduced by Tan et alfl 

i 
d[CGC CAG CTC]-CPG " CN-(CH2)2-o-r-O-d[CGC CAG CTC]-CPG 

7 (iPr)21~ 8 

N -  
O 

ii . F ~  N'-: 
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(HPLC analysis) O= =P--O-d[CGC CAG CTC] 

O- 9 

Scheme 3. Reagents: (i)(fiar)2NP(CI)O(CH2)2CN, (iPr)2EtN, 1-methylimidazole, Py, MeCN, rt, 1 h; (ii) (l) 6, 1H-tetrazole, 
MeCN, rt, 30 min; (2) I2, H20; (3) MeNH2:NH4OH (1:1), 50 °C, 10 min; (4) ion-exchange HPLC (POROS 20 HQ), buffer 
A: 23 mM Tris-HCl, 1 mM EDTA, pH 8.0 with H:O:acetonitrile (90:10), buffer B: A containing 1.0 M NaC1, 10-60% B 
in 30 rain. 
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First, the known 5"-O-tosyl derivative of cytidine 19 1 was subjected to nucleophilic fluorination using KF 

and an azocrown ether, Kryptofix [222] 20 (Scheme 1). The reaction, however, yielded only the 2,5'-anhydride 2 

formed via nucleophilic attack by the 2-carbonyl oxygen initiated by proton abstraction from N 4 by fluoride. 2j 

In order to avoid the intramolecular cyclization, we then chose the O4-methylthymidine derivative 5. 

O4-Methylthymidine 4 acts as pseudo-cytldine by paring with guanosine. 22 According to a literature procedure, 23 

thymidine 3 was converted to 4 in 37% yield (Scheme 2). Selective tosylation of 4 by the method of Reist et al. ~ 

followed by acetylation gave the precursor 5 in 57% yield. Fluorination was performed using two equivalents of 

KF and Kryptofix [222] in anhydrous MeCN at 100 °C in a sealed tube for 15 minY The reaction mixture was 

subsequently treated with concentrated NH4OH at 100 °C in a sealed tube for another 15 min. Purification by 

reverse-phase HPLC 26 afforded 5'-deoxy-5'-fluoro-O4-methylthymidine 6 as a powder in 49% yieldY The 

structure was confirmed by 19F NMR and HRMS. 26 Fluorination and purification were completed within 2 h. 

Coupling of 6 to the CPG-bound 9-base ODN 28 7 was carried out by the reverse-activation protocoP 8 

(Scheme 3). Phosphitylation of 7 was successful by treatment with 2-cyanoethyl N,N- 

diisopropylchlorophosphoramidite and N,N-diisopropylethylamine in the presence of 1-methylimidazole and 

pyridine in anhydrous MeCN at room temperature for 1 h. The resulting phosphoramidite 29 8 was then reacted 

with 6 in MeCN containing 1H-tetrazole at rt for 30 min. After oxidation with aqueous iodine, the product ODN 

was simultaneously deprotected and cleaved from the CPG following the standard MeNH2-NH4OH treatment at 

50 °C for 10 min. The crude mixture was purified by ion-exchange HPLC (POROS 20 HQ) to yield the desired 

5'-fluorinated ODN 9 in 5-10% yield based on 7 analyzed by HPLC. 3° The structure of 9 was confirmed by 

MALDI-TOF MS. 3° The total time required for coupling and purification was 2 h. 

The present work demonstrates that the synthesis of 5'-fluorinated antisense ODN can be accomplished 

within 4 h, a neccesary condition for F-18 labeling. Since the fluorination of the nucleoside and the activation of 

CPG-bound ODN can be performed concurrently, the total reaction time could be reduced further. Synthesis of 

['SF]fluorinated antisense ODN as well as its in vitro and in vivo applications will be reported elsewhere. 
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