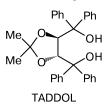
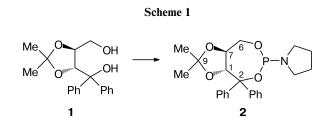
Letters to the Editor

First phosphite ligand based on ((4*R*,5*S*)-5-(hydroxymethyl)-2,2-dimethyl-1,3-dioxolan-4-yl)diphenylmethanol


K. N. Gavrilov,^a* I. M. Novikov,^a I. V. Chuchelkin,^a S. V. Zheglov,^a M. S. Levkina,^a A. N. Volov,^b and I. A. Zamilatskov^b

^aS. A. Esenin Ryazan State University,

46 ul. Svobody, 390000 Rayzan, Russian Federation. Fax: +7 (491 2) 28 1435. E-mail: k.gavrilov@rsu.edu.ru
^bA. N. Frumkin Institute of Physical Chemistry and Electrochemistry, Russian Academy of Sciences, 31 Leninsky prosp., 119071 Moscow, Russian Federation. Fax: +7 (495) 952 0449. E-mail: alex123.87@mail.ru

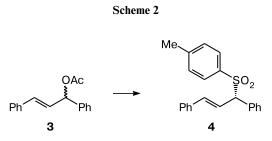

((4R,5R)-2,2-Dimethyl-1,3-dioxolan-4,5-diyl)bis-(diphenylmethanol) (TADDOL) is one of the most accessible enantiopure C_2 symmetric diols extensively used as versatile chiral ligand/auxiliary.¹⁻³ TADDOL-derived phosphites revealed themselves to be efficient chiral ligands

for a wide range of metal-catalyzed asymmetric reactions.^{3–8} To date, no phosphite derivatives of ((4R,5S)-5-(hydroxymethyl)-2,2dimethyl-1,3-dioxolan-4-yl)diphenylmethanol (1) were described. 1,4-Diol 1, analog of TADDOL with the pronounced *C* symmetry

with the pronounced C_1 symmetry, is readily accessible from available monomethyl (R,R)-tartrate.⁹

Amidophospite 2 with P*-stereocenter was synthesized by treatment of diol 1 with PCl₃ followed by the reaction with pyrrolidine (Scheme 1). In this reaction, pyrrolidine plays a role of both the reagent and the HCl scavenger. Note that the synthesis of compound 2 is fast due also to the intermediate formation of the corresponding chlorophosphite in the PCl_3 medium in the presence of catalytic amount of *N*-methylpyrrolidone. Amidophosphite **2** was purified by flash column chromatography; this compound is relatively stable in air and at long-term storage in a dry atmosphere.

Reagents and conditions 1) PCl₃, *N*-methylpyrrolidone, reflux, 5 min, 2) (CH₂)₄NH, toluene.


Synthesis of ligand 2 is diastereoselective, the ratio of the epimers at the P*-stereocenter is 19 : 1. This ratio was

Published in Russian in Izvestiya Akademii Nauk. Seriya Khimicheskaya, No. 12, pp. 2628-2630, December, 2013.

1066-5285/13/6212-2628 © 2013 Springer Science+Business Media, Inc.

determined from ³¹P NMR (CDCl₃) spectra of compound **2** exhibiting two narrow singlets at $\delta_{\rm P}$ 144.9 (95%) and 137.3 (5%). It should be emphasized that the presence of the P*-stereogenic donor atom in the ligand **2** facilitates the chirality transfer on the key step of the catalytic cycle.^{10,11}

Stereodifferentiating ability of amidophosphite **2** was estimated using enantioselective Pd-catalyzed allylic sulfonylation of (E)-1,3-diphenylallyl acetate (**3**) (Scheme 2, Table 1) as a model reaction. It is of note that chiral allyl sulfones are of considerable interest for the stereoselective organic synthesis.¹¹

Reagents and conditions: 1) [Pd(allyl)Cl]₂, ligand **2**, THF, 20 °C, 15 min, 2) *p*-TolSO₂Na, 20 °C, 48 h.

As a pre-catalyst, $[Pd(allyl)Cl]_2$ was used. Allylic sulfone (*S*)-**4** was obtained in high yield and high enantioselectivity up to 90% *ee* (see Table 1). In this reaction, the known TADDOL-derived bis-phosphine ligand gives no more than 68% *ee.*⁹ Thus, amidophosphite **2** is a promising chiral ligand and its application in asymmetric catalysis is now extensively studied in our research group.

 31 P, ¹H, and ¹³C NMR spectra were run on Bruker Avance 400 (161.98 (³¹P), 400.13 (¹H), and 100.61 MHz (¹³C)) and Bruker Avance III 600 (242.94 (³¹P), 600.13 (¹H), and 150.9 MHz (¹³C)) spectrometers relative to 85% H₃PO₄ in D₂O (³¹P) and

Table 1. Pd-catalyzed asymmetric allylic sulfonylation^a of diphenylallyl acetate **3** with sodium *p*-toluenesulfinate in the presence of ligand **2**

Entry	Ratio ligand 2 : Pd (mol/mol)	Yield of 4 (%)	ee (%) ^{b,c}
1	1	87	90 (<i>S</i>)
2	2	92	85 (<i>S</i>)

 a Reaction conditions: $\left[\text{Pd}(allyl)\text{Cl} \right]_2$ (2 mol.%), THF, 20 °C, 48 h.

^b Enantiomeric excesses of product **4** were determined by HPLC (chiral column Daicel Chiralcel OD-H, elution with C₆H₁₄—PrⁱOH (4 : 1), eluent flow rate 0.5 mL min⁻¹, detection at $\lambda = 254$ nm, retention times t(R) = 16.3 min, t(S) = 18.5 min).

^c Configuration of the product is given in parentheses.

Me₄Si (¹H and ¹³C). The signals in the ¹H and ¹³C NMR spectra were assigned using COSY, DEPT, and HSQC NMR techniques and taking in account published data.⁹ Electron impact mass spectra (EI, 70 eV) were obtained on a Varian MAT-311 instrument. Enantiomeric analyses of the product of allylic sulfonylation were performed on a Stayer HPLC system. For elemental analyses, Carlo Erba EA1108 CHNS-O microanalyzer was used.

All reactions were carried out in anhydrous solvents under dry argon. ((4R,5S)-5-(Hydroxymethyl)-2,2-dimethyl-1,3-dioxolan-4-yl)diphenylmethanol (1) were synthesized by the known procedure.⁹ The starting compounds, (*E*)-1,3-diphenylallyl acetate (3) and complex [Pd(allyl)Cl]₂, were synthesized as earlier described.¹² Pd-catalyzed asymmetric allylic sulfonylation of compound 3 with sodium *p*-toluenesulfinate and determination of enantiomeric excesses of product 4 were performed following the published procedures.¹³

Pyrrolidine, *N*-methylpyrrolidone, and sodium *p*-toluenesulfinate are commercially available from Fluka and Aldrich.

(1R,7S)-9,9-Dimethyl-2,2-diphenyl-4-(pyrrolidin-1-yl)-3,5,8,10-tetraoxa-4-phosphabicyclo[5.3.0]decane (2). To a vigorously stirred suspension of compound 1 (0.63 g, 2 mmol) in PCl₃ (4 mL, 45.5 mmol), N-methylpyrrolidone (0.01 g, 0.1 mmol) was added and the mixture was refluxed for 5 min until homogeneity. The PCl₃ excess was removed in vacuo (40 Torr), the residue was dried in vacuo (30 min, 1 Torr) to remove the PCl₃ traces and dissolved in toluene (12 mL). To the obtained solution, pyrrolidine (0.4 mL, 4.8 mmol) was added at 20 °C under vigorous stirring. The reaction mixture was refluxed for 15 min, cooled to 20 °C, and filtered through an alumina pad. The filtrate was concentrated in vacuo (40 Torr). Purification of the residue by flash column chromatography (silica gel, elution with CH_2Cl_2) afforded compound 2 in the yield of 0.59 g (71%), colorless oil. Found (%): C, 67.05; H, 6.76; N, 3.24. C₂₃H₂₈NO₄P. Calculated (%): C, 66.82; H, 6.83; N, 3.39. ¹³C NMR (CDCl₃), δ: 25.4 (s, CH₃); 25.9 (d, CH₂, ${}^{3}J_{C,P} = 5.4$ Hz); 27.4 (s, CH₃); 44.5 (d, CH_2N , ${}^2J_{C,P} = 15.0 Hz$); 65.6 (d, C(6), ${}^2J_{C,P} = 10.0 Hz$); 75.3 (d, C(7), ${}^{3}J_{C,P} = 3.8 \text{ Hz}$); 80.6 (d, C(2), ${}^{2}J_{C,P} = 5.7 \text{ Hz}$); 86.2 (d, C(1), ${}^{3}J_{C,P} = 19.1 \text{ Hz}$); 110.7 (s, C(9)); 126.8 (s, CH_{Ph}); 126.9 (s, CH_{Ph}); 127.0 (s, CH_{Ph}); 127.3 (s, CH_{Ph}); 128.0 (s, CH_{Ph}); 128.4 (s, CH_{Ph}); 141.3 (s, C_{Ph}); 146.7 (s, C_{Ph}). ¹H NMR (CDCl₃), δ: 0.66 (s, 3 H, CH₃); 1.46 (s, 3 H, CH₃); 1.84-1.91 (m, 4 H, CH₂); 3.24–3.29 (m, 2 H, CH₂N); 3.39–3.44 (m, 2 H, CH₂N); 3.89 (ddd, 1 H, C(6)H, ${}^{2}J_{H,H} = 11.2$ Hz, ${}^{3}J_{H,H} = 9.2$ Hz, ${}^{3}J_{\rm H,P} = 2.4 \text{ Hz}$; 4.18 (td, 1 H, C(7)H, ${}^{3}J_{\rm H,H} = 9.2 \text{ Hz}$, ${}^{3}J_{\rm H,H} =$ = 3.6 Hz); 4.33 (ddd, 1 H, C(6)H, ${}^{2}J_{H,H}$ = 11.2 Hz, ${}^{3}J_{H,H}$ = 3.6 Hz, ${}^{3}J_{H,P}$ = 28.2 Hz); 4.96 (dd, 1 H, C(1)H, ${}^{3}J_{H,H}$ = 9.1 Hz, ${}^{4}J_{H,P}$ = = 3.9 Hz); 7.22 (t, 1 H, CH_{ph}, ${}^{3}J$ = 7.4 Hz); 7.28 (t, 2 H, CH_{ph}, ${}^{3}J$ = 7.4 Hz); 7.30–7.34 (m, 2 H, CH_{ph}); 7.39 (t, 1 H, CH_{ph}, ${}^{3}J = 7.5 \text{ Hz}$; 7.41 (d, 2 H, CH_{Ph}, ${}^{3}J = 7.6 \text{ Hz}$); 7.65 (d, 2 H, CH_{Ph}, ${}^{3}J = 7.6$ Hz). MS, $m/z (I_{rel} (\%))$: 413 [M]⁺ (100).

Asymmetric allylic sulfonylation of (E)-1,3-diphenylallyl acetate (3) with sodium *p*-toluenesulfinate. A solution of $[Pd(allyl)Cl]_2$ (0.0019 g, 0.005 mmol) and ligand 2 (0.004 g, 0.01 mmol or 0.008 g, 0.02 mmol) in THF (1.5 mL) was stirred for 40 min. Then (E)-1,3-diphenylallyl acetate (3) (0.05 mL, 0.25 mmol) was added. After 15 min stirring, sodium *p*-toluenesulfinate (0.089 g, 0.5 mmol) was added and stirring was continued for 48 h. To the reaction mixture, brine (3 mL) was added, the mixture was stirred for 1 h and extracted with THF (3×2 mL). The organic layer was washed with brine (2×2 mL), dried with MgSO₄, and filtered through Celite. The solvent was removed *in vacuo*

Gavrilov et al.

(40 Torr). Crystallization of the residue from 95% EtOH followed by drying *in vacuo* (10 Torr) afforded product 4, milkwhite crystals. IR and NMR ¹H spectral data for compound 4 are in good agreement with that published earlier.⁹ Enantiomeric excesses of product 4 (see Table 1) were determined by HPLC on a chiral stationary phase.

This work was financially supported by the Russian Foundation for Basic Research (Project No. 11-03-00347-a).

References

- 1. K. C. Bhowmick, N. N. Joshi, *Tetrahedron: Asymmetry*, 2006, **17**, 1901.
- 2. D. Seebach, A. K. Beck, A. Heckel, *Angew. Chem., Int. Ed.*, 2001, **40**, 92.
- 3. H. Pellissier, Tetrahedron, 2008, 64, 10279.
- 4. M. D. K. Boele, P. C. J. Kamer, M. Lutz, A. L. Spek, J. G. de Vries, P. W. N. M. van Leeuwen, G. P. F. van Strijdonck, *Chem. – Eur. J.*, 2004, **10**, 6232.

- 5. R. Hilgraf, A. Pfaltz, Adv. Synth. Catal., 2005, 347, 61.
- 6. S. M. Smith, N. C. Thacker, J. M. Takacs, J. Am. Chem. Soc., 2008, 130, 3734.
- 7. C. A. Falciola, A. Alexakis, Eur. J. Org. Chem., 2008, 3765.
- P. W. N. M. van Leeuwen, P. C. J. Kamer, C. Claver, O. Pamies, M. Diéguez, *Chem. Rev.*, 2011, **111**, 2077.
- D. Seebach, E. Devaquet, A. Emst, M. Hayakawa, F. N. M. Kiihnle, W. B. Schweizer, B. Weher, *Helv. Chim. Acta*, 1995, 78, 1636.
- Q.-L. Zhou, in *Privileged Chiral Ligands and Catalysts*, Ed. Q.-L. Zhou, Wiley-VCH, Weinheim, 2011, 484 pp.
- 11. K. V. L. Crepy, T. Imamoto, Adv. Synth. Catal., 2003, 345, 79.
- 12. P. R. Auburn, P. B. McKenzie, B. Bosnich, J. Am. Chem. Soc., 1985, 107, 2033.
- V. N. Tsarev, S. E. Lyubimov, A. A. Shiryaev, S. V. Zheglov, O. G. Bondarev, V. A. Davankov, A. A. Kabro, S. K. Moiseev, V. N. Kalinin, K. N. Gavrilov, *Eur. J. Org. Chem.*, 2004, 2214.

Received June 3, 2013